Point-NeRF Point-based Neural Radiance Fields

Point-NeRF是一种使用点云表示的神经辐射场方法,旨在改进NeRF的效率和性能。它通过结合点云和多视角信息来重建场景,采用逆距离误差体密度回归和快速检索策略。在DTU和Synthetic-NeRF数据集上的实验展示了其优越的重建效果,并通过消融实验验证了关键组件的作用。该技术有望在3D场景重建和渲染领域带来进步。
摘要由CSDN通过智能技术生成

Point-NeRF: Point-based Neural Radiance Fields

基于点云的NeRF

[Point-NeRF: Point-based Neural Radiance Fields (pythonawesome.com)](https://pythonawesome.com/point-nerf-point-based-neural-radiance-fields/#:~:text=Point-NeRF uses neural 3D point clouds%2C with associated,scene surfaces%2C in a ray marching-based rendering pipeline.)

基于MVSNet,NeRF,MVSNeRF和NSVF、COLMAP

1.效果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y7Hes5JJ-1678066488355)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304193110948.png)]

2.主要思想

针对NeRF的缺点

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vzeghVnR-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304193459803.png)]

3.相关工作

  • 场景表达:点云、网格
  • 多视角重建和渲染:splatting(抛雪球法)
  • NeRF

4.场景表达

  1. 体渲染与辐射场
  2. 基于点的辐射场
  3. 单个点的处理
  4. 视角相关的颜色回归:
    • 逆距离误差
  5. 体密度回归
    • 快速检索

5.重建

  1. 生成初始的基于点的辐射场
  2. 点特征
    • VGG,拼接
    • 视角信息
  3. 端到端重建
    • 生成网络与表达网络同时训练

6.优化

  1. 点云修剪
  2. 点云扩展
    • 采样

7.实现细节

  1. 预训练
    • DTU数据集
    • L2渲染误差
    • adam优化器
    • 能从3个输入视角中,耗时0.2s生成点云
  2. 逐场景优化

8.实验结果

  • DTU数据集上的实验
  • Synthetic-NeRF数据集上的实验
  • T&T
  • ScanNet

9.消融实验

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EAzMdtPK-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195413224.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fEDVBeM2-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195334158.png)]

10.总结与展望

678066488356)]

[外链图片转存中…(img-fEDVBeM2-1678066488356)]

10.总结与展望

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Glb0TLFr-1678066488357)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195517546.png)]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值