Point-NeRF: Point-based Neural Radiance Fields
基于点云的NeRF
[Point-NeRF: Point-based Neural Radiance Fields (pythonawesome.com)](https://pythonawesome.com/point-nerf-point-based-neural-radiance-fields/#:~:text=Point-NeRF uses neural 3D point clouds%2C with associated,scene surfaces%2C in a ray marching-based rendering pipeline.)
基于MVSNet,NeRF,MVSNeRF和NSVF、COLMAP
1.效果
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y7Hes5JJ-1678066488355)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304193110948.png)]
2.主要思想
针对NeRF的缺点
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vzeghVnR-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304193459803.png)]
3.相关工作
- 场景表达:点云、网格
- 多视角重建和渲染:splatting(抛雪球法)
- NeRF
4.场景表达
- 体渲染与辐射场
- 基于点的辐射场
- 单个点的处理
- 视角相关的颜色回归:
- 逆距离误差
- 体密度回归
- 快速检索
5.重建
- 生成初始的基于点的辐射场
- 点特征
- VGG,拼接
- 视角信息
- 端到端重建
- 生成网络与表达网络同时训练
6.优化
- 点云修剪
- 点云扩展
- 采样
7.实现细节
- 预训练
- DTU数据集
- L2渲染误差
- adam优化器
- 能从3个输入视角中,耗时0.2s生成点云
- 逐场景优化
8.实验结果
- DTU数据集上的实验
- Synthetic-NeRF数据集上的实验
- T&T
- ScanNet
9.消融实验
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EAzMdtPK-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195413224.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fEDVBeM2-1678066488356)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195334158.png)]
10.总结与展望
678066488356)]
[外链图片转存中…(img-fEDVBeM2-1678066488356)]
10.总结与展望
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Glb0TLFr-1678066488357)(C:\Users\SongMingxin\AppData\Roaming\Typora\typora-user-images\image-20230304195517546.png)]