【特征向量】——从线性代数角度看分解与合成

概念

本文是在读了黎文科老师神奇的矩阵后,做的一些笔记以及对分解和合成的一点思考,如有问题,欢迎交流。
这里附上一些线性代数中的数学概念。

  • 矩阵:描述运动,本质是在一组基描述下的向量(对象)的线性变换 { e 1 , e 2 , . . . , e n } \{e_1,e_2,...,e_n\} {e1,e2,...,en}
  • 线性无关基:完备性(数量足够)+线性独立(不能相互表示),可表示任意一个向量
  • 正交归一基:基之间相互正交,模为1
  • 特征向量:对于一个矩阵(线性变换),特征向量(对象)变换之后方向不变
    A x = λ x A\pmb{x}=\lambda \pmb{x} Axxx=λxxx
  • 向量:可以理解为一组基下的坐标 ( c 1 , c 2 , . . . , c n ) (c_1,c_2,...,c_n) (c1,c2,...,cn)
    φ = c 1 e 1 + c 2 e 2 + . . . + c n e n \pmb{\varphi}=c_1\pmb{e_1}+c_2\pmb{e_2}+...+c_n\pmb{e_n} φφφ=c1e1e1e1+c2e2e2e2+...+cnenenen

特征向量与特征值

特征向量的引入是为了选取一组很好的基。

  1. 分解向量(本质是以特征向量为基,进行坐标变换)
     我们知道,对于一个线性变换,只要选定一组基,就可以用一个矩阵 T 1 T_1 T1来描述这个线性变换。换一组基,就得到另一个不同的矩阵 T 2 T_2 T2。如果我们选取特征向量做基的话,空间任意一个向量可用特征向量来表示:
    φ = c 1 p 1 + c 2 p 2 + . . . + c n p n \pmb{\varphi}=c_1\pmb{p_1}+c_2\pmb{p_2}+...+c_n\pmb{p_n} φφφ=c1p1p1p1+c2p2p2p2+...+cnpnpnpn
     由于线性变换不改变特征向量的方向,故在对向量做线性变换时,形式简单:
    A φ = A ( c 1 p 1 + c 2 p 2 + . . . + c n p n ) = c 1 λ 1 p 1 + c 2 λ 2 p 2 + . . . + c n λ n p n A\pmb{\varphi}=A(c_1\pmb{p_1}+c_2\pmb{p_2}+...+c_n\pmb{p_n})=c_1\lambda_1\pmb{p_1}+c_2\lambda_2\pmb{p_2}+...+c_n\lambda_n\pmb{p_n} Aφφφ=A(c1p1p1p1+c2p2p2p2+...+cnpnpnpn)=c1λ1p1p1p1+c2λ2p2p2p2+...+cnλnpnpnpn
     综上,我们可以看出,如果一个矩阵(线性变换)存在n个特征向量,那么将它们作为正交基对向量进行分解,比直接进行线性变换大大简化地了运算。
  2. 分解矩阵
     在对矩阵进行对角化后,可以写成如下的形式:
    A = P [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ] P T , P = { p 1 , p 2 , . . . , p n } A=P \left[ \begin{matrix} \lambda_1 & 0 & \cdots & 0 \\ 0 &\lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{matrix} \right]P^{T},P=\{\pmb{p_1},\pmb{p_2},...,\pmb{p_n}\} A=Pλ1000λ2000λnPT,P={p1p1p1,p2p2p2,...,pnpnpn}
     进一步展开:
    A = λ 1 P 1 + . . . + λ n P n , P n = p n p n T A= \lambda_1 P_1+...+\lambda_nP_n,P_n=\pmb{p_n}\pmb{p_n}^{T} A=λ1P1+...+λnPn,Pn=pnpnpnpnpnpnT
     这里的目的是对线性变换进行展开,叫做谱分解,主成分分析里有这东西。

从特征向量看信号与系统

众所周知,信号与系统讨论的系统是线性时不变系统,而线性时不变系统的特征向量就是e指数函数,所以我们选取特征向量(e指数函数)为基,对时域信号进行分解(即获取它在特征向量基底下的坐标),这就是傅里叶分析。线性时不变系统的特征向量就是e指数函数也是我们采用傅里叶分析的原因,所谓的频域空间就是e指数函数空间。
 下面我们证明一下线性时不变系统的特征向量就是e指数函数, T T T代表系统的作用:
T [ e j ω t ] = g ( t ) T[e^{j\omega t}]=g(t) T[ejωt]=g(t) g ( t ) = ∫ e j ω τ h ( t − τ ) d τ g(t)=\int e^{j\omega \tau}h(t-\tau){\rm d\tau} g(t)=ejωτh(tτ)dτ g ( t ) = e j ω t ∫ e − j ω x h ( x ) d x g(t)=e^{j\omega t}\int e^{-j\omega x}h(x){\rm dx} g(t)=ejωtejωxh(x)dx g ( t ) = H ( ω ) e j ω t g(t)=H(\omega)e^{j\omega t} g(t)=H(ω)ejωt T [ e j ω t ] = H ( ω ) e j ω t T[e^{j\omega t}]=H(\omega)e^{j\omega t} T[ejωt]=H(ω)ejωt
 可以发现,e指数函数经过线性时不变系统系统的作用后方向不变,即为系统的特征向量。
 回到上面的分解向量,两者的本质思想是一样的,唯一的差别在于维度上。所以说,信号中线性-分解-合成时选取傅里叶变换和拉普拉斯变换是有道理的。

拓展

  1. 我们可以发现,线性微分方程的特征向量也是e指数函数,这也是我们取其为基,表示解的原因。
  2. 用特征函数解的方程是最简洁的,否则,如果用级数的方式解方程,会发现方程的解有无穷多项。在解贝塞尔方程时,我们没有找到特征函数,于是退而求其次才选择级数求解,至少级数具有完备性。
  3. 数学中的分解方法有很多,各类的积分变换都对应着一个函数空间,具体要看我们想选取哪一组基去刻画对象,然后得到对象在目标基底下的坐标。
    在这里插入图片描述

对于泰勒展开,我们选取了多项式为基,由多项式构成的空间就叫多项式空间。对傅里叶变换,我们选取了三角函数为基,由三角函数构成的空间就叫做频率空间。

Reference:
1.神奇的矩阵第二季.黎文科

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值