open3d

1、

source_rgbd_image= cv2.imread("./dataset/016/image/image00001.png")

source_rgbd_image1=o3d.io.read_image("./dataset/016/image/image00001.png")

color_cv_s = np.asarray(source_rgbd_image)

此时source_rgbd_image和color_cv_s应该都是numpy的数组,但cv2读入的是BGR顺序,color_cv_s是RGB顺序。
2、

source_rgbd_image= cv2.imread("./dataset/016/image/image00001.png")
target_rgbd_image = cv2.imread("./dataset/016/depth/depth00001.png")

source_rgbd_image1=o3d.io.read_image("./dataset/016/depth/depth00001.png")
target_rgbd_image1 =o3d.io.read_image("./dataset/016/image/image00001.png")
color_cv_s = np.asarray(source_rgbd_image1)
color_cv_t = np.asarray(target_rgbd_image1)
#color_cv_s = np.asarray(source_rgbd_image1)
#print(color_cv_s)
print(source_rgbd_image.ndim)
print(source_rgbd_image.shape)
print(source_rgbd_image.dtype)
print(source_rgbd_image.itemsize)

print(target_rgbd_image.ndim)
print(target_rgbd_image.shape)
print(target_rgbd_image.dtype)
print(target_rgbd_image.itemsize)

print(color_cv_s.ndim)
print(color_cv_s.shape)
print(color_cv_s.dtype)
print(color_cv_s.itemsize)

print(color_cv_t.ndim)
print(color_cv_t.shape)
print(color_cv_t.dtype)
print(color_cv_t.itemsize)

输出
在这里插入图片描述

source_rgbd_image= cv2.imread("./dataset/016/image/image00001.png")
target_rgbd_image = cv2.imread("./dataset/016/depth/depth00001.png")


color=o3d.io.read_image("./dataset/016/image/image00001.png")
depth=o3d.io.read_image("./dataset/016/depth/depth00001.png")
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        color,
        depth,
        depth_trunc=3.0,
        convert_rgb_to_intensity=False)

color_cv_c = np.asarray(rgbd_image.color)
color_cv_d = np.asarray(rgbd_image.depth)

print(source_rgbd_image.ndim)
print(source_rgbd_image.shape)
print(source_rgbd_image.dtype)
print(source_rgbd_image.itemsize)

print(target_rgbd_image.ndim)
print(target_rgbd_image.shape)
print(target_rgbd_image.dtype)
print(target_rgbd_image.itemsize)

print(color_cv_c.ndim)
print(color_cv_c.shape)
print(color_cv_c.dtype)
print(color_cv_c.itemsize)

print(color_cv_d.ndim)
print(color_cv_d.shape)
print(color_cv_d.dtype)
print(color_cv_d.itemsize)

输出
在这里插入图片描述
如果convert_rgb_to_intensity=True
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值