MOTchallenge数据集
- MOT15:15 年的都是采集的老的数据集的视频做的修正。参考论文:MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking
- MOT16:16 年的是全新的数据集,相比于 15 年的行人密度更高、难度更大。特别注意这个 DPM 检测器,效果非常的差,全是漏检和误检。参考论文:MOT 16: A Benchmark for Multi-Object Tracking
- MOT17:17 年的视频和 16 年一模一样,只是提供了三个检测器,相对来说更公平。也是现在论文的主流数据集。
- MOT19:19 年的是针对特别拥挤情形的数据集,只有 CVPR 19 比赛时才能提交。
- MOT20:20年的相比于此前的多目标跟踪(multi-object tracking)数据集,更加关注人群密集的场景,其视频最多可达单帧 246 人。
数据集格式
拿 MOT 17 举例
文件目录
- MOT17
- train
- MOT17-02-DPM
- det
- det.txt
- gt
- gt.txt
- img1
- seqinfo.init
- MOT17-02-FRCNN
...
- test
- MOT17-01-DPM
- det
- det.txt
- img1
- seqinfo.ini
- MOT17-01-FRCNN
...
seqinfo. ini
在每个子文件夹中都有这个,主要用于说明这个文件的一些信息,比如长度,帧率,图片的长和宽,图片的后缀名。
[Sequence]
name=MOT17-02-DPM
imDir=img1
frameRate=30
seqLength=600
imWidth=1920
imHeight=1080
imExt=.jpg
det. txt
这个文件中存储了图片的检测框的信息 (检测得到的信息文件),部分内容展示如下:
1,-1,1359.1,413.27,120.26,362.77,2.3092,-1,-1,-1
从左到右分别代表:
- frame: 第几帧图片
- id: 这个检测框分配的 id,在这里都是-1 代表没有 id 信息
- bbox (四位): 分别是左上角坐标和长宽
- conf:这个 bbox 包含物体的置信度,可以看到并不是传统意义的 0-1,分数越高代表置信度越高
- MOT 3 D (x, y, z): 是在 MOT 3 D 中使用到的内容,这里关心的是 MOT 2 D,所以都设置为-1
可以看出以上内容主要提供的和目标检测的信息没有区别,所以也在一定程度上可以用于检测器的训练。
gt. txt
这个文件只有 train 的子文件夹中有,test 中没有,其中内容的格式和 det. txt 有一些类似,部分内容如下:
1,1,912,484,97,109,0,7,1
从左到右分别是:
-
frame: 第几帧图片
-
ID: 也就是轨迹的 ID,可以看出 gt 里边是按照轨迹的 ID 号进行排序的
-
bbox: 分别是左上角坐标和长宽
-
是否忽略:0 代表忽略
-
classes: 目标的类别个数(这里是驾驶场景包括 12 个类别),7 代表的是静止的人。第 8 个类代表错检,9-11 代表被遮挡的类别
-
最后一个代表目标运动时被其他目标包含、覆盖、边缘裁剪的情况。