毫米波雷达设备(TI IWR/AWR)干扰缓解

       不同雷达之间的干扰可能会对雷达功能产生灾难性后果,导致漏检、盲点、范围缩小和幽灵物体。 稳健、可靠的雷达性能需要方法来识别并减轻干扰,或者完全避免干扰。 随着汽车和工业环境中部署的雷达数量的增加,干扰是雷达可靠运行的一个主要问题。 因此,一个雷达的传输被另一雷达接收的可能性也增加了。 干扰会导致许多问题,例如底噪声的降低导致检测失败,或者在某些范围或方向出现盲点。 在某些情况下,它还可以产生幽灵物体。

        在FMCW雷达中,产生并传输具有线性上升频率的信号:

        这个传输的信号从其视野内的目标反射,并在接收机接收。所接收到的信号是所传输信号的延迟副本。接收到的信号使用传输的信号进行混合,然后进行数字化采样得到ADC数据。因为反射信号是发射信号的一个延迟版本,所以混合的下降信号对应于一个频率与这个延迟成正比的正弦信号。延迟本身与目标之间的距离成正比。

        延迟永远不会是负的。因此,给定一个正的调频斜率,所有有效的对象都对应于正的频率。用傅里叶变换估计频率,可以估计出延迟。利用延迟和光速,可以估计到目标的距离。因此,接收机可以检测到的最大距离受到中频带宽的限制。如果目标的频率超过了中频带宽,它将被过滤掉

常见的干扰主要分为交叉干扰和并行干扰:

交叉干扰:

        如果受害方雷达和攻击方雷达具有不同的调频斜率,则两个线性调频脉冲可能会相互交叉。 当交叉发生时,受害者雷达会观察到交叉干扰。 攻击者的发射信号将与受害者的发射信号混合,只有当攻击者的频率差落入受害者的中频带宽内时,受害者才能观察到攻击者的能量。

        下图中给出了一个示例。当攻击者雷达的chirp穿过受害者发送的chirp时,攻击者的chirp能量被观察到为一个快速通过中频带宽的chirp。它可以是一个从零到中频带宽的恒定斜率,也可以是一个从中频到零频率的斜率。在时域上,受干扰影响的区域类似于一个小故障。

        最后,在频域对ADC样本进行傅里叶变换后,这些交叉干扰器通常会增加底噪降低强目标的信噪比,埋葬弱目标,从而影响检测和产生瞬时盲点。故障持续时间由受害者的IF带宽和受害者(攻击者)和攻击者(攻击者)的斜率决定。如下式所示:

        小故障的持续时间通常很小。例如,如果中频带宽为12 MHz,斜率差为40 MHz/us,大约为0.3 us,或最终ADC输出的4个样本,将会受到干扰的影响。

并行干扰:

        当攻击源线性调频信号和受害源线性调频信号具有完全相同的斜率时,仅当受害源线性调频信号与攻击源线性调频信号之间的起始时间非常接近,以致攻击源线性调频信号位于受害源线性调频信号的 IF 带宽内时,才会发生干扰

        当与发射器芯片混合时,并行干扰源成为 ADC 数据中的恒定频率音调。 对 ADC 数据应用傅里叶变换后,在傅里叶域中,变成幽灵物体。 也就是说,它的行为就像一个随机距离、随机速度的目标。 这种干扰称为并行干扰。 当这种情况发生时,干扰区域几乎是整个线性调频脉冲。

        然而,发生并行干扰的概率非常小。只有当两个雷达几乎同时启动时,才会发生干扰,这样攻击者雷达信号就存在于受害者雷达的中频带宽中。否则,攻击者雷达信号就会被受害者雷达接受端过滤掉。并行干扰器的干扰概率(p)可以通过最大延迟(td)、chirp重复周期(tc)和场景中存在的雷达数量(Nr)来计算:

        例如,在超短距离雷达中,最大距离为20米,td为0.13 μs。在这种情况下,只有当两个雷达之间的启动距离在0.13 μs以内时,才会发生干扰。假设 chirp持续时间为100µs,该区域有10个雷达在工作,假设占空比为100%,干扰概率仅为1.3%。如果每个雷达的占空比仅为10%,则干扰的概率将进一步显著降低。

       总结:交叉干扰会导致底噪增加,经常发生,但影响少量样本。并行干扰会产生鬼影,但很少概率发生,但发生会影响整个样本。

干扰预防的方法:

  • 标准化:不同雷达的不同频段和时隙
  • 对于并行干扰,设置不同起始时间
  • 感知干扰并避免
  • 设置不同的天线极化方法

定位和干扰缓解:

        在许多情况下,都不可能避免交叉干扰。不经任何处理的交叉干扰会增加低噪,蔽较弱的目标。本节介绍通过定位缓解来减少性能退化的方法。定位是指在chirp中寻找哪些样本受到干扰影响的过程。

定位干扰可以通过以下两种方式之一来实现:

1. 首先,在ADC数据中找到异常值。强交叉干扰看起来像是ADC数据中的大故障。例如,如果你要取一个chirp中的每个样本的能量,并将其绘制为时间的函数,在干扰器交叉的点上,chirp的第一个样本能量会有很大的增加。可以找到并设置一个合适的阈值,能量超过这个阈值的样本可以标记为受干扰影响。下图显示了一个样本ADC数据幅值图,干扰清晰可见,尽管由于存在较大的低频信号,与信号没有很大的区别。然而,如果这些低频信号被使用一个简单的差分滤波器抑制,所产生的信号会使干扰更加突出。

2. chirp质量度量是可选择性地附加到每个chirp上的附加度量,并使用XWR设备的一些高级特性来提供有关干扰的信息。由于XWR器件具有复杂的基带,它们可以区分正频率和负频率。如前面所述,延误绝不能是负的。因此,如果斜率为正,所有有效的物体都有正的频率。负频率中的任何信号都可能是由于干扰。从图9中可以看出,信号带(蓝线)大于图像带(红线)。然而,当交叉干涉出现时,图像带的能量会突然上升。

缓解干扰:

        在找到了干扰的位置后,我们现在想要缓解它们。这里的缓解是指减弱干扰的过程。最简单的缓解方法是用零值替换干扰区域。然而,这样做的副作用是可能会产生大的旁瓣,从而掩盖弱目标。更好的方法是用窗口进行空白处理。 平滑窗口用于将受干扰影响的样本归零。 这会降低旁瓣并提高弱目标的可检测性

        更好的方法是在空白区域执行线性插值,使用干扰前的最后一个良好ADC 样本和干扰周期后的第一个良好 ADC 样本。 由于最强的反射器可能更靠近雷达,因此频率较低,因此这种方法在许多情况下效果很好。

<think>嗯,用户问的是点云鬼影形成的原因。首先,我需要明确什么是点云鬼影。点云通常是由激光雷达或深度相机等设备采集的三维数据,由大量的点组成,每个点都有坐标信息。鬼影应该是指在这些点云数据中出现的不真实的、重复的或者虚假的点结构,类似于图像中的重影或者伪影。 接下来,我需要回忆一下点云采集的原理。激光雷达通过发射激光束并接收反射信号来测量距离,而深度相机可能使用结构光或者飞行时间(ToF)技术。在采集过程中,可能会遇到各种干扰因素,比如动态物体、多路径反射、传感器噪声等,这些都可能导致鬼影的出现。 然后,考虑具体原因。动态物体在扫描过程中移动,可能导致同一物体在不同位置被多次记录,形成重影。比如,一辆车在激光雷达扫描时移动,可能在两个位置被捕捉到,产生鬼影。这时候可能需要数学建模,比如用运动物体的轨迹方程来描述,比如位置随时间的变化,导致点云中的位置偏移。 多路径反射也是一个原因。当激光束经过多次反射后才返回传感器,比如先打到玻璃再反射到其他表面,这样计算的距离可能不准确,导致虚假点。这种情况下,可能涉及到光线路径的几何分析,比如反射路径的长度与实际物体距离的差异,可以用几何光学公式来解释。 传感器噪声方面,硬件本身的噪声可能导致点云中的异常点。例如,光电探测器的噪声可能使得某些点的坐标出现偏差。这时候可能需要用统计模型,比如高斯噪声模型,或者信噪比的计算来说明噪声对点云质量的影响。 此外,环境因素如雾、雨等天气条件可能影响激光的传播,导致散射吸收,产生错误的点。这里可能需要考虑激光在大气中的传输方程,比如衰减系数散射系数的影响。 还有可能是软件处理的问题,比如点云配准或滤波算法不当,导致错误的重建结果。例如,在点云配准过程中,错误的匹配可能导致结构错位,形成鬼影。这时候可能需要涉及点云处理算法,比如ICP(迭代最近点)算法中的误差分析,或者滤波算法中阈值设置不当导致的伪影。 然后,我需要将这些原因分门别类,结构清晰地呈现出来。可能分为动态物体干扰、多路径反射、传感器噪声、环境干扰算法处理误差等几个方面。每个方面需要给出具体的机制例子,可能还需要数学模型或公式来定量描述。 例如,在动态物体部分,可以用运动物体的位移公式,如$v = \Delta x / \Delta t$,说明在两次扫描之间物体的位移导致点云中的位置偏差,从而形成鬼影。在多路径反射中,可以用光程差公式$\Delta s = 2(d_2 - d_1)$,其中$d_1$是直接路径,$d_2$是反射路径,导致测量的距离误差。 另外,还需要考虑不同传感器类型的影响,比如ToF相机结构光相机的原理差异是否会导致不同的鬼影成因。例如,结构光可能更容易受到表面反光的影响,而ToF可能受多路径影响更大。 同时,用户可能不仅想知道原因,还可能希望了解如何解决或减轻鬼影现象,所以在解释原因后可能需要简要提到解决方法,比如使用时间同步技术减少动态物体的影响,改进传感器设计减少多路径反射,或者采用滤波算法去除噪声点等。 最后,需要确保语言通俗易懂,避免过于专业的术语,或者在必要时解释术语。同时,按照用户之前的要求,数学公式需要用$$...$$或$...$格式,并且正确使用LaTeX语法。结构上分点说明,层次清晰,帮助用户逐步理解。</think>点云鬼影是指在三维点云数据中出现的非真实、重复或虚假几何结构的现象,其形成与数据采集原理环境干扰密切相关。以下从技术原理分步骤解释主要成因: --- ### **1. 动态物体干扰** 当扫描场景中存在运动物体时,传感器不同时刻采集的数据叠加会产生位移伪影。 - **数学描述**: 设物体运动速度为$v$,扫描周期为$\Delta t$,则位置偏差为: $$ \Delta x = v \cdot \Delta t $$ 在连续帧叠加时,同一物体会在$P(t)$$P(t+\Delta t)$处生成两个点云簇,形成“重影”。 - **典型场景**: 自动驾驶激光雷达扫描中,车辆以60km/h(≈16.67m/s)行驶,若扫描周期10ms,则单帧位移达0.167m,导致点云错位。 --- ### **2. 多路径反射(Multi-path Effect)** 激光/光信号经多次反射后返回传感器,导致测量值偏离真实位置。 - **物理模型**: 假设激光先打到玻璃(距离$d_1$)再反射到墙面(总路径$d_1+d_2$),传感器误判物体距离为: $$ d_{measured} = \frac{c \cdot t_{return}}{2} = d_1 + d_2 $$ 实际墙面真实距离应为$d_2$,但点云会错误生成在$d_1+d_2$位置。 - **数据表现**: 在室内玻璃幕墙环境中,此类鬼影会出现在真实墙体后的虚空中(如图1所示)。 --- ### **3. 传感器噪声与硬件局限** 硬件误差会导致点云坐标异常。 - **噪声模型**: 测距误差服从高斯分布: $$ \epsilon \sim \mathcal{N}(0, \sigma^2) $$ 当$\sigma$较大时(如低精度ToF相机),异常点会形成随机分布的“噪点鬼影”。 - **案例**: 毫米波雷达在雨雾天气中,信噪比(SNR)下降: $$ SNR = \frac{P_{signal}}{P_{noise}} \propto e^{-\beta R} $$ 其中$\beta$为衰减系数,$R$为探测距离,低SNR导致点云中出现虚假目标。 --- ### **4. 环境光干扰** 强环境光会干扰光学传感器的信号接收。 - **光强方程**: 有效信号强度$I_{signal}$与环境光$I_{ambient}$的关系为: $$ I_{received} = I_{signal} + I_{ambient} $$ 当$I_{ambient} > I_{signal}$时(如正午阳光下的室外扫描),传感器可能误触发生成噪点。 --- ### **5. 数据处理算法缺陷** 不恰当的滤波或配准算法会人为引入伪影。 - **ICP配准误差**: 迭代最近点算法(ICP)的均方误差(MSE)函数: $$ E = \frac{1}{N} \sum_{i=1}^N \| T(p_i) - q_i \|^2 $$ 若初始位姿偏差过大或存在动态物体,优化会收敛到错误解,导致点云错位叠加。 - **体素滤波副作用**: 下采样时若体素尺寸$v_{size}$过大: $$ v_{size} > \frac{\lambda}{2} $$ ($\lambda$为特征尺寸),会导致细小结构丢失并在空区域生成虚假面片。 --- ### **解决方案** 1. **硬件改进**: - 使用短脉冲激光(如1550nm波长激光雷达)减少多路径干扰 - 增加抗环境光电路设计(如SPAD阵列) 2. **算法优化**: - 引入运动补偿模型:$ \hat{P}(t) = P(t) - v \cdot t $ - 采用深度学习方法(如PointNet++)识别并剔除异常点 3. **多传感器融合**: 通过卡尔曼滤波融合激光雷达与IMU数据: $$ \hat{x}_k = F_k \hat{x}_{k-1} + B_k u_k + K_k (z_k - H_k \hat{x}_{k-1}) $$ --- 点云鬼影的本质是物理测量过程与计算重建中误差的耦合体现,需通过“传感器设计-数据采集-算法处理”全链路优化实现抑制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值