P56页开始学习
3.4
1.初始化所有变量:
initial=tf.global_variables_initializer()
sess.run(initial)
2.assign赋值命令
tf.assign(A,B)#把B赋值给A,注意类型要一致
w1.assign(w2)
如果赋值的时候维度不一样则
tf.assign(A,B,validate_shape=False)
3.placeholder不一定需要定义维度
x = tf.placeholder(tf.float32,shape=(1,2),name="input")
或者直接
x = tf.placeholder(tf.float32)
但一般来说是需要定义维度以参加计算
4.seed=1存疑
5.tf.log是计算log
6.tf.clip_by_value()
tf.clip_by_value(A, min, max)#输入一个张量A,把A中的每一个元素的值都压缩在min和max之间。小于min的让它等于min,大于max的元素的值等于max
https://blog.csdn.net/uestc_c2_403/article/details/72190248
7.cross_entropy的定义
之前手写识别的计算过程里面有
这里的是新形式:
cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0))
+(1-y_)*tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
8.二分类问题会有特征提取
如果有两个特征 x1 x2
Y=[[int(x1+x2<1)] for (x1,x2) in X]
的意思就是对于(128,2)这个矩阵来说,每一行代表一个样本(x1,x2)比如x1是零件的质量,x2是零件的长度,当x1+x2<1就代表这个零件合格,则返回给Y一个1,最终Y是一个(128,1)的向量。
start=(i*batch_size)%dataset_size
end=min(start+batch_size,dataset_size)
选batch 用这个整除法有点意思(先存疑)
附上最终程序
#author MJY
import tensorflow as tf
import numpy as np
from numpy.random import RandomState#为了生成模拟数据集
batch_size=8#定义训练集大小
w1=tf.Variable(tf.random_normal([2,3],stddev=0.1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=0.1,seed=1))
x=tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_=tf.placeholder(tf.float32,shape=(None,1),name='y-input')
#这里用None是为了在运用不同的batch的时候方便一点
#定义前向传播:
a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
#定义损失和反向传播
y=tf.sigmoid(y)
cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0))
+(1-y_)*tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
train_step=tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
#通过随机数生成一个模拟数据集:
rdm=RandomState(1)
dataset_size=128
X=rdm.rand(dataset_size,2)
Y=[[int(x1+x2<1)] for (x1,x2) in X]#定义规则
#创建会话以运行程序
with tf.Session() as sess:
initial = tf.global_variables_initializer()
sess.run(initial)
# print(sess.run(w1))
# print(sess.run(w2))
# print(sess.run(X))
#设定训练的轮数
STEPS=5000
for i in range(STEPS):
#依次选取batch_size个样本进行训练
start=(i * batch_size) % dataset_size
end=min(start+batch_size,dataset_size)#定义了每一次的样本选取的起点到终点
sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
if i%1000 == 0:
total_cross_entropy=sess.run(cross_entropy,feed_dict={x:X,y_:Y})
print("After %d training step(s),cross entropy on all data is %g"%
(i,total_cross_entropy))
print(sess.run(w1))
print(sess.run(w2))