2019年,加拿大的学者在《JAMA》(一区,IF=120.7 )发表题为:Effect of High-Dose Vitamin D Supplementation on Volumetric Bone Density and Bone Strength 的研究论文。
这项研究为一项临床RCT研究,旨在探讨补充更高剂量的维生素D是否能提高骨密度(BMD)和骨强度。结果表明,在健康成年人中,补充更高剂量的维生素D并不能改善骨骼健康。
摘要与主要结果
一、摘要
背景:很少有研究评估每日维生素 D 剂量在 12 个月或更长时间内达到或高于可耐受的上限摄入量的影响,但 3% 的美国成年人报告每天至少摄入 4000 IU 维生素 D。 本研究旨在评估补充维生素D对体积骨矿物质密度(BMD)和强度的剂量依赖性影响。
方法: 2013年8月至2017年12月,在加拿大卡尔加里的一个单一中心进行了为期三年的双盲随机临床试验,包括311名55至70岁的无骨质疏松症社区健康成年人,25-羟基维生素D(25[OH]D)的基线水平为30至125 nmol/L。
干预措施:维生素D每日剂量为400国际单位(n=109)、4000国际单位(n=100)或10 000国际单位(n=102),持续3年。为每天饮食摄入量低于1200毫克的参与者补充钙。
主要结果:主要结果是用高分辨率外周定量计算机断层扫描评估的桡骨和胫骨的总体积BMD,以及用有限元分析估计的桡骨和胫骨的骨强度(失效负荷)。
结果:311名随机参与者(53%为男性;平均[SD]年龄62.2[4.2]岁)中,287人(92%)完成了研究。400-IU组的基线、3个月和3年25(OH)D水平分别为76.3、76.7和77.4 nmol/L;4000-IU组为81.3、115.3和132.2;10000 IU组为78.4、188.0和144.4。体积骨密度存在显著的组×时间交互作用。在试验结束时,与400 IU组相比,4000 IU组(−3.9 mg HA/cm [95% CI,−6.5至−1.3])和10 000 IU组(−7.5 mg HA/cm [95% CI,−10.1至−5.0])径向体积BMD较低,体积BMD的平均百分比变化为- 1.2% (400 IU组)、- 2.4% (4000 IU组)和- 3.5% (10 000 IU组)。与400 IU组相比,4000 IU组的胫骨体积BMD差异为−1.8 mg HA/cm (95% CI,−3.7至0.1),而10 000 IU组(95% CI,−6.0至−2.2)的胫骨体积BMD差异为−4.1 mg HA/cm,平均百分比变化值为−0.4% (400 IU)、−1.0% (4000 IU)和−1.7% (10 000 IU)。失效载荷的变化没有显著差异(半径,P = .06;胫骨,P = .12)。
结论:在健康成人中,用维生素D治疗3年,剂量为每天4000 IU或10 000 IU天,与400 IU天相比,具有统计学意义的较低辐射剂量 BMD只有每天10 000 IU剂量的胫骨BMD显著降低。桡骨和胫骨的骨强度均无显著差异。这些发现并不支持高剂量维生素D补充剂对骨骼健康的益处;还需要进一步的研究来确定它是否有害。
二、研究结果
1.基线特征
共有542名参与者被筛选,311人符合纳入标准并随机接受,287人(92%)完成了3年试验的所有方面。主要分析包括303名参与者。其中53%为男性,主要为白人(95%)。根据DXA T评分分类,参与者的髋部骨密度正常(81%)或低(19%)。
2.血清25(OH)D水平变化
400-IU组的平均血清25(OH)D测量从基线到36个月(76.3-77.4 nmol/L)没有变化。4000-IU组在3个月时(81.3-115.3 nmol/L)血清25(OH)D较基线显著增加,到36个月时进一步增加到132.2 nmol/L。在10000 iu组(78.4-188.0 nmol/L),至3个月的基线增加,在18个月时增加到200.4 nmol/L,但在36个月时下降到144.4 nmol/L(图2)。
3.主要结果1
体积骨密度的数据分布和变化。组×时间的交互作用在胫骨(P < .001)和桡骨(P < .001)的总骨密度上有显著性差异。在这两个位点,总体积BMD显示出负剂量-反应关系(图3;维生素D补充剂量越大,损失越大。在试验结束时,根据混合模型分析,4000和400 IU组之间的差异是- 3.9 mg HA/cm (95% CI,−6.5到−1.3),10 000和400 IU组之间的差异是- 7.5 mg HA/cm (95% CI,−10.1到−5.0)。 这相当于半径范围内平均基线值−1.2% (400-IU组)、−2.4% (4000-IU组)和−3.5% (10000 - iu组)的变化。对于胫骨总骨密度的混合模型分析,组间的等效差异为- 1.8 mg HA/cm (95% CI, - 3.7至0.1;无统计学意义)在4000-IU组和- 4.1 mg HA/cm (95% CI,−6.0至−2.2)在10 - iu组;与基线相比,等效平均变化分别为−0.4% (400 iu组)、−1.0% (4000 iu组)和−1.7% (10 000 iu组)。
3.主要结果2
骨强度随着试验时间的延长而下降;然而,组×时间的交互作用不显著(半径,P = .06;胫骨,P = .12)。
设计与统计学方法
一、研究设计
P参与者:招募的311名55至70岁的无骨质疏松症社区健康成年人。
I干预:维生素D每日剂量为400国际单位(n=109),持续3年。
维生素D每日剂量为4000国际单位(n=100),持续3年。
维生素D每日剂量为10 000国际单位(n=102),持续3年。
C对照:互为对照。
O结局:主要结局:基线、6个月、12个月、24个月和36个月桡骨和胫骨的总体积骨密度BMD,桡骨和胫骨的骨强度。
次要结局:继发性骨预后包括DXA测量的全髋关节面积骨密度、HRpQCT测量的皮质和小梁体积骨密度、皮质孔隙度和小梁数量。平衡(姿势的摇摆),身体功能(计时开始;握力)和生活质量(SF36问卷)。
S研究类型:双盲、临床RCT研究
二、统计方法
1.样本量计算:根据样本量计算,并考虑20%的损耗,总计300名参与者在0.025 α水平上,90%的power。
2.接受至少1剂研究药物和至少1次随访的参与者被纳入初步分析。采用限制线性混合效应模型对每个结果变量进行分析。固定效应包括治疗组、时间(如有必要)和治疗×时间交互作用(如有统计学意义),表明治疗效果显著。随机效应包括截距和斜率都可能变化的时间。参与者之间的相关性被建模为顺序为1的自回归误差。缺失的数据可以用混合效应模型来解释。
3.所有参与者,不论随访次数,都被纳入安全性分析。安全结果报告为每组中经历严重和预先规定的不良事件的参与者的比例。对不良事件进行正式调查(假设不良事件的总发生率≥4%和≤96%),采用logistic回归分析各组间的比例趋势差异。在这个简单的logistic回归中,不良事件(是或否)是二元结局变量,剂量(400 IU、4000 IU或10 000 IU)是解释变量。
4.所有统计分析均使用R统计软件(版本R 3.4)。
小结
本文是一项双盲的随机对照研究,将研究者按1:1:1随机分为3个组,
探讨补充更高剂量的维生素D是否能提高骨密度(BMD)和骨强度。
主要结局为在基线、6个月、12个月、24个月和36个月桡骨和胫骨的总体积骨密度BMD,桡骨和胫骨的骨强度。
属于一项重复测量的研究,所以用到的统计分析方法为线性混合模型。
接下来用自己的数据来复现两个图怎么画!
案例:“chongfu”数据集
目的:研究运动对血糖值的影响
组别:1:1分为干预组和对照组
测量时间:0h;2h;4h;6h
(固定效应是group、time和group * time交互作用;随机效应是每个对象的随机截距id。)
以下代码主要复现箱式图的画法
以下代码主要复现混合效应模型预测图的画法
接下来用3种不同的混合效应模型方式来对比:
一、基线作为结局的交互,本文采取的就是这种方式
spss分析:
R语言:
二、基线作为协变量
spss分析:
R语言:
三、基线作为协变量,结局为差值
spss分析:
R语言:
小结:
①三种方法用R语言跑出来的结果与spss都能对应,前提是spss操作里“重复协方差类型”选择“复合对称”。
②不管是直接使用每个时间点的数据,还是使用t0-各时间点的数据作为结局(方法二和方法三),结果均一致。
③R语言中的结果原本是没有p值的,想要有p值得先加载lmerTest包。
本公众提供各种科研服务了!
一、课程培训 2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10门课。如果您有需求,不妨点击查看: 发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名 二、统计服务 为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情: 医学统计服务| 医公共数据库论文一对一指导 |