预测模型的Meta分析
人工智能(AI)是计算机科学的一个重要分支,其主要目标是让算法执行通常由人类完成的任务。机器学习是指一组允许算法从数据中学习并自我优化的技术,而无需明确编程。深度学习这一术语常与机器学习互换使用,但它特指通过多个处理层从输入数据中提取高级信息的算法。一些文献提到的放射图像分类已被确定为人工智能能够显著简化的重要领域,涵盖了分诊或筛查服务、决策辅助以及作为放射科医生的第二读者支持等应用。
本期我们将深入解读一篇关于人工智能在骨折检测应用的元分析文章,标题为《Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis》。
题目:Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis
杂志:RADIOLOGY
影响因子:IF=12.1
中科院分区:医学一区
发表时间:2022年7月
想要快速发表自己的第一篇 SCI,应该是很多科研学者朝思暮想的事情,但是,如何去实现呢?
全优统计™ 在这里为您提供了解决方案!锁定时间,抓住机会,一跃成为科研领域的佼佼者。
PART·1 研究背景
骨折的发生率在每10万人年中为733到4017。在2019至2020财年,英国急诊科接待了120万名急性骨折或脱位患者,同比增长23%。骨折在X光片上的漏诊或误诊率为3%到10%,经验丰富的医生通常误诊率较低,但获得专家意见的机会有限。影像学检查需求增长快于放射科医生招聘,导致误诊问题突出。
人工智能(AI)在骨折检测中表现出高准确率,深度学习技术尤其有效。近期研究显示AI在骨折检测中的准确率高达93%到99%。本研究对42项相关研究进行了系统评价和荟萃分析,比较了AI和临床医生在骨折检测中的表现,并评估了研究方法和偏倚风险。
PART·2 方法学
文献检索
数据库:Ovid Medline, Ovid Embase, EBS