SHAP法可解释性机器学习介绍:理论与方法

2024-2025 课程介绍

可预开发票,郑老师团队2024-25年科研统计课程预告,含机器学习、轨迹模型等11.30-12.1 R语言构建机器模型模型课程开启

先前本公众号就曾分享过,现在预测模型的文章,大多数都在用机器学习来建模和验证了,并且,可以看出,文章的题目已经不再强调“列线图”,现在文章多强调“SHAP”法。

时代变了,“SHAP” 取代“列线图”,成为预测模型文章标题的重点

但是有好多学者“只知其名”,不懂应该如何应用。为此,我们将推出“SHAP法实用指南”系列文章,为大家讲清楚如何正确进行SHAP分析!

今天分享的这篇文章题为:“Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development”的研究论文。

本文重点介绍了SHapley Additive exPlanations(SHAP)这一基于特征的可解释性方法,提供实用指南,以帮助研究人员和从业者更好地理解和应用机器学习模型的预测结果。

研究团队着重介绍了SHAP分析在标准机器学习(ML)模型中的应用,并提供了各种可视化图。

我们的系列文章也将基于这篇文献开展。

c6dc66846c9f2b7b3d545e666c9d87e3.png

SHAP分析实用指南:解释药物开发中的监督机器学习模型预测

今天是我们系列文章的第一篇:SHAP法的理论背景以及SHAP值的计算公式。

从时间来看,SHAP法从出现到广泛应用其实才没过几年:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值