中国学者占多数!NHANES免费医学数据库2024年度发文大盘点,增长88%

要说2024年最火爆的数据库,非NHANES(美国健康、营养调查数据库)莫属!尤其在下半年,接连两次的数据更新更是成功霸榜科研圈:

为什么说NHANES数据库适合现在挖掘?

NHANES 数据库的优点有很多,这里简单罗列出三点:

  • 数据够「全」:涵盖264个不同主题的数据模块,可以说是覆盖了大部分临床科室的选题;

  • 数据够「多」:涵盖多个周期的数据,今年更是新增了1.1w的样本量;

  • 数据够「新」:涵盖最新2021~2023年数据,此次更新不仅新增可分析的指标,还包含了COVID-19相关的信息。

所以说,现在挖NHANES数据库,讲求的就是效率,你还不抓紧?

今天我们来盘点一下2024年NHANES数据库研究领域的发文情况,希望能助力大家2025年的科研写作。以下数据分析结论是基于PubMed文献数据库,以NHANES为关键词通过citexs数据分析平台得出,仅供参考。

NHANES数据库年度发文趋势

据不完全统计,过去十年,NHANES相关文献共发表11,286篇,年均发文量为1,129篇。

2024年,NHANES数据库发文量创顶峰共3690篇,达到最快增长率88.65%。从发文量来看,目前NHANES领域飞速发展,处于快速上升阶段。

588d5a7773f5b8d797d20918c39e13ef.png

国内发文趋势

据不完全统计,2024年,中国在NHANES数据库领域的发文量远超其他国家,排名前20的发文机构均来自国内。其中,首都医科大学以112篇的发文量位居全球NO.1!!紧随其后的是四川大学,发文量为100篇,位居全球第二;华中科技大学则以69篇的发文量位列全球第三!

ca7ff47fe386b34db006aac431558bb3.png

主要发文期刊

2024年NHANES相关文献共发表3690篇,发文量排名前10的期刊见下图,其中刊载文献量最多的期刊是Front Nutr(243篇);Sci Rep位居第二,刊载文献量224篇;Front Endocrinol (Lausanne)位居第三,刊载文献量173篇。

8d946e1a3d307baad128d7e8f1525222.png

研究机构发文量排序

2024年中国以发文量2926篇占比79.3%,位居第一,美国(484篇,13.12%)与英国(38篇,1.03%)次之。

24916861b7ba52e08793330c01475530.png

顶级论文推荐

根据搜索关键词NHANES,综合文献被引用次数、发表时间、年份、影响因子等条件,大数据分析平台为大家推荐出10篇文献,感兴趣的朋友可以搜索相关文献进行阅读哦,相信大家会有所收获!!

9ca27733a77597946e4999cedfbec227.png

NHANES数据库热点关键词

论文关键词是对研究目的、研究对象、研究方法进行高度凝练与概括。基于关键词的分析能够反映某一研究领域某一时间段内主题演变趋势和研究热点。

下面我们就来盘点一下2024年度NHANES数据库分析领域的热点关键词,出现频次前5的关键词分别是:cross-sectional study,mortality,national health and nutrition examination survey,depression,obesity。

fab627645cb965387199f42a73d8d0bd.png

希望这些热点词可以给想用NHANES数据库发SCI的同学一些启发与灵感!

好啦,以上就是NHANES数据库分析领域2024年度盘点的全部内容啦!希望能够对您新一年的科研深耕有所帮助。愿每一位科研工作者都能在新的一年里深耕细作,收获满满!

最后,欢迎大家使用NHANES online平台,数据下载与分析一站式快速平台! 浙中大郑老师团队研发!
NHANES数据库自动下载平台2.0版来啦!

关于郑老师团队及公众号 

大型医学统计服务公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理

我们开展对临床预测模型、机器学习、医学免费数据库NHANES、GBD数据库、孟德尔随机化方法、MIMIC 一对一R语言指导开展统计分析(一年内不限时间,周末、晚上均统计师一对一指导)。

①指导学习R语言基本技巧

②全程指导课程学习

③课程R语言代码运行bug修复

④支持学员一篇SCI论文的数据分析

1对1R语言指导详情介绍

详情联系助教小董咨询(微信号aq566665

411cdc0660f650f38c40138e5513259b.jpeg

<think>好的,我需要处理用户关于NHANES数据库使用方法和下载地址的查询。首先,用户提供了几个系统级指令,要求回答结构清晰,使用中文,生成相关问题,并正确引用提供的参考资料。我需要确保所有数学表达式用$...$格式,但当前问题可能不涉及数学内容,所以这点可能暂时用不上。 首先,我需要整理用户提供的引用内容。引用[1]提到了NHANES的数据发布网址,并说明了各个周期的数据介绍。引用[2]提到数据库的使用方法,包括B区、C区的检索方法,以及A区的整合功能,还提到了选择2017-March 2020的数据集。引用[3]则提供了官网链接。用户的请求是查找使用方法或下载地址,所以需要综合这些信息。 接下来,我需要分步骤回答用户的问题。第一步是访问官网,这里需要给出网址,并说明如何找到不同周期的数据。引用[1]中的网址是正确的,应该放在第一步。第二步是数据分类,根据引用[1]提到的数据类型(比如Demographics、Dietary),需要详细说明,可能还要补充其他常见的数据类型如Laboratory。第三步是数据集检索,根据引用[2],A区整合了B和C区的功能,可能需要具体说明如何操作,比如通过A区的搜索功能查找变量或数据集。第四步是下载数据,需要指导用户如何下载,比如点击“Download”按钮,并推荐工具如SAS或R。第五步是合并数据,可能需要指导用户使用ID变量进行合并,如SEQN。 然后,生成相关问题。根据用户可能感兴趣的方面,可以涉及如何合并数据集、常见变量类型、数据分析工具推荐、数据更新周期以及数据使用条款等。这些问题需要与引用内容相关,比如引用[1]提到了数据类型,引用[2]提到数据集检索,引用[3]是官网信息。 需要确保回答中引用的标注正确,例如在提到数据发布网址时添加[^1],在检索方法部分添加[^2],官网引用[^3]。同时,回答的结构要清晰,分点说明使用方法,每个步骤引用对应的资料。 最后,检查是否遗漏了用户的任何需求。用户明确询问了使用方法和下载地址,回答中需要覆盖这两个方面。确保语言口语化,避免使用专业术语过多,但必要时需准确,如变量名或工具名称。同时,避免使用Markdown格式,保持自然的中文叙述。</think>### NHANES数据库使用方法及下载地址 NHANES(美国国家健康与营养调查)数据库提供公开的健康相关数据,以下是具体使用方法和下载步骤: --- #### **1. 访问官方网站** - **网址**:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 这是NHANES数据发布的官方平台,包含所有周期的数据集(如1999-2000、2017-2020等)[^1]。 - **页面功能**: - **按周期选择数据**:点击对应年份的链接(如“NHANES 2017-March 2020”)。 - **数据类型分类**:包括人口统计学(Demographics)、饮食(Dietary)、实验室检测(Laboratory)等[^1]。 --- #### **2. 数据分类与检索** NHANES数据分为以下类型(需熟悉英文关键词)[^2]: - **Demographics**:年龄、性别、种族等基础信息。 - **Examination**:体检数据(如血压、BMI)。 - **Laboratory**:血液、尿液检测结果。 - **Questionnaire**:问卷调查数据(如吸烟、饮酒习惯)。 - **Dietary**:饮食摄入记录。 **检索方法**: - **通过A区整合功能**:直接搜索变量名称(如“BMI”)或数据集名称。 - **通过B区/C区**:分别按变量或数据集分类筛选。 --- #### **3. 下载数据** 1. 进入目标数据集页面(如“Demographics Data”)。 2. 点击“**Download Data**”获取数据文件(格式为.XPT,需SAS或R读取)。 3. 配套文档:同时下载“**Documentation**”和“**Codebook**”以理解变量含义。 --- #### **4. 数据合并与分析** - **合并关键变量**:所有数据集通过唯一标识符`SEQN`(受访者ID)关联。 - **工具推荐**: - **SAS**:官方推荐工具,原生支持.XPT格式。 - **R/Python**:使用`haven`(R)或`pandas`(Python)库读取数据。 --- #### **5. 注意事项** - **数据周期**:注意不同周期的样本设计和变量差异。 - **使用条款**:需遵循CDC的引用规范和数据使用协议[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值