
前言
在每个卷积层中学习单个静态卷积核1是现代卷积神经网络(CNN)的通用训练范式。相反,最近对动态卷积的研究表明,卷积核的加权组合及其与输入相关的注意事项可以显著提高轻量级CNN的准确性,同时保持高效推理。然而,现有的作品赋予了卷积通过一维具有动态属性的核,但其他三个维度被忽略了。受此启发,提出全维动态卷积(ODConv)。ODConv是一种新的多维注意力机制,具有并行策略学习卷积核在所有四维上的互补注意事项-任何卷积层上的核空间。ODConv可以插入到许多CNN架构中。有趣的是,由于其改进的特征学习能力,ODConv甚至一个内核可以与现有的动态卷积竞争或超越具有多个内核的对等体,大大减少了额外的参数。此外,ODConv在调节注意力方面也优于其他注意力模块输出特征或卷积权重。
ODConv理论详解可以参考链接:论文地址
ODConv代码可在这个链接找到:代码地址
本文在YOLOv9中引入ODConv(全维度动态卷积),实现了大幅度涨点,代码已经整理好了,跟着文章复制粘贴,即可直接运行
改进前的结果:

改进后的结果,从各项评价指标看出大幅度涨点

订阅专栏 解锁全文
534

被折叠的 条评论
为什么被折叠?



