手把手教你YOLOv9画对比图,画改进后的对比图,支持多个实验结果,写作和科研必备(全网最详细)

49 篇文章 6 订阅 ¥199.90 ¥299.90

在这里插入图片描述

介绍

今天写一下YOLOv8画改进前后的对比结果图, 画损失对比图、mAP(平均精度值)对比图、recall(召回率)对比图,precision(精确率)对比图,代码已经写好了,大家只需复制粘贴即可运行。本文提供两种画法:
1.合并画法:精度和损失的各项指标在一个图形窗口中显示多张子图。这个画法更加紧凑和直观,可以一次性对比多个指标。
2.逐个画法:逐个绘制每个指标的图

合并画法直接上效果图:

在这里插入图片描述

逐个画法直接上效果图(图太多了,就不展示了):

在这里插入图片描述

1)评价指标解释:</

YOLOv10是一种基于You Only Look Once(YOLO,一种实时物体检测算法)系列的最新版本,它是由 Ultralytics(一家专注于计算机视觉的公司)开发的。YOLOv10的主要特点是高效、准确,并且支持实时检测。以下是手把手YOLOv10的一些基本步骤: 1. **下载预训练模型**:首先,从Ultralytics的GitHub仓库下载预训练的YOLOv10权重文件,例如`yolov10.weights`。 2. **安装依赖**:确保你已经安装了PyTorch库以及其相关的深度学习工具,如TensorRT(用于加速推理)。 3. **加载模型**:使用`torch.hub.load()`函加载模型,同时设置合适的输入大小(如416x416),例如: ```python model = torch.hub.load('ultralytics/yolov5', 'yolov10', pretrained=True) ``` 4. **配置据集**:为了在实际场景中使用模型,你需要准备相应的据集,包括训练集和测试集标签文件。可以使用COCO等标准格式,或者自定义标注工具。 5. **训练**:如果你需要微调模型,可以加载预训练模型并对其进行训练。这通常涉及划分据集,定义损失函和优化器,然后迭代训练过程。 6. **预测**:对于实时应用,通过输入片或视频帧到模型进行预测,返回每个检测框的位置、类别和置信度信息。可以使用`model(torch.Tensor(img))`来进行预测。 7. **可视化结果**:使用像`plottitle`, `line_plot`这样的工具将预测结果显示出来,以便更好地理解和评估性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值