
原论文摘要
本文集中于开发用于密集预测的现代、高效、轻量级模型,同时在参数、FLOPs和性能之间进行权衡。反向残差块(IRB)是轻量级CNN的基础结构,但在基于注意力的研究中没有得到相应的重视。本文从统一的角度重新思考了轻量级基础结构,结合了高效的IRB和Transformer的有效组件,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残差Meta Mobile Block(MMB)。遵循简单但有效的设计原则,我们推导出一个现代化的反向残差移动块(iRMB),并构建了一个仅使用iRMB的类似ResNet的高效模型(EMO)用于下游任务。
iRMB介绍
iRMB重新参考MobileNetv2中的反向残差块,并结合Transformer中的核心MHSA和FFN模块,归纳出一个通用的Meta Mobile Block(MMB),该模块采用参数化参数扩展比λ和高效操作符F来实例化不同的模块。MMB可以揭示上述三个模块的一致本质表达,并且MMB可以被视为改进的轻量级Transformer集中体,EMO只包含一个推导出的iRMB,吸收了轻量级CNN和Transformer的优势。以尽量少的核心模块,以减少模型复杂性并加速部署,达到轻量化效果。如下图左侧所示,通过对 MobileNetv2 中的 IRB 以及 Transformer 中的核心 MHSA 和 FFN 模块进行抽象,作者提出了统一的 MMB 对上述几个结构进行归纳表示,即采用扩张率λ和高效算子F来实例化不同的模块。

主要方法如下:
1.提出了设计高效EMO模型的标准,如可用性、统一性、有效性和效率。
2.元移动模块 (Meta Mobile Block, MMB):提出了一个通用的元移动模块(MMB),该模块可以统一地抽象出IRB、MHSA(多头自注意力)和FFN(前馈神经网络)的核心结构。
3.反转残差移动模块 (Inverted Residual Mobile Block, iRMB):在元移动模块的基础上,提出了一种现代的反转残差移动模块(iRMB),并基于此构建了一个ResNet样式的高效模型(EMO)。
iRMB理论详解可以参考链接:论文地址
iRMB代码可在这个链接找到:代码地址
本文在YOLOv10中引入iRMB(反向残差注意力),代码已经整理好了,跟着文章复制粘贴,即可直接运行
目录
🎓一、YOLOv10原始版本代码下载
如果之前有在我的网盘下载的YOLOv10源码的就不需要重新下载了,没有下载从我的网盘下载,链接: YOLOv10原始版本源码下载
提取码: js2i
注意注意注意:如果在我之前的文章下载过YOLOv10源码,不用重新下载了,没有特殊说明都是用同一个版本的源码
🍀🍀1.YOLOv10模型结构图
根据yolov10n.yaml画出yolo整体结构图,如下图所示

🍀🍀2.环境配置
环境配置参考教程链接:链接: 环境配置链接,如果已经配置好环境可以忽略此步骤
🎓二、iRMB代码
# -*- coding: utf-8 -*-
"""
@Auth : 挂科边缘
@File :iRMB.py
@IDE :PyCharm
@Motto:学习新思想,争做新青年
@Email :179958974@qq.com
@qq :179958974
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from einops import rearrange
from timm.models._efficientnet_blocks import SqueezeExcite
from timm.models.layers import DropPath
inplace = True
class LayerNorm2d(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):
super().__init__()
self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def forward(self, x):
x = rearrange(x, 'b c h w -> b h w c').contiguous()
x = self.norm(x)
x = rearrange(x, 'b h w c -> b c h w').contiguous()
return x
def get_norm(norm_layer='in_1d'):
eps = 1e-6
norm_dict = {
'none': nn.Identity,
'in_1d': partial(nn.InstanceNorm1d, eps=eps),
'in_2d': partial(nn.InstanceNorm2d, eps=eps),
'in_3d': partial(nn.InstanceNorm3d, eps=eps),
'bn_1d': partial(nn.BatchNorm1d, eps=eps),
'bn_2d': partial(nn.BatchNorm2d, eps=eps),
# 'bn_2d': partial(nn.SyncBatchNorm, eps=eps),
'bn_3d': partial(nn.BatchNorm3d, eps=eps),
'gn': partial(nn.GroupNorm, eps=eps),
'ln_1d': partial(nn.LayerNorm, eps=eps),
'ln_2d': partial(LayerNorm2d, eps=eps),
}
return norm_dict[norm_layer]
def get_act(act_layer='relu'):
act_dict = {
'none': nn.Identity,
'relu': nn.ReLU,
'relu6': nn.ReLU6,
'silu': nn.SiLU
}
return act_dict[act_layer]
class ConvNormAct(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, stride=1, dilation=1, groups=1, bias=False,
skip=False, norm_layer='bn_2d', act_layer='relu', inplace=True, drop_path_rate=0.):
super(ConvNormAct, self).__init__()
self.has_skip = skip and dim_in == dim_out
padding = math.ceil((kernel_size - stride) / 2)
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride, padding, dilation, groups, bias)
self.norm = get_norm(norm_layer)(dim_out)
self.act = get_act(act_layer)(inplace=inplace)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv(x)
x = self.norm(x)
x = self.act(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class iRMB(nn.Module):
def __init__(self, dim_in, dim_out, norm_in=True, has_skip=True, exp_ratio=1.0, norm_layer='bn_2d',
act_layer='relu', v_proj=True, dw_ks=3, stride=1, dilation=1, se_ratio=0.0, dim_head=8, window_size=7,
attn_s=True, qkv_bias=False, attn_drop=0., drop=0., drop_path=0., v_group=False, attn_pre=False):
super().__init__()
self.norm = get_norm(norm_layer)(dim_in) if norm_in else nn.Identity()
dim_mid = int(dim_in * exp_ratio)
self.has_skip = (dim_in == dim_out and stride == 1) and has_skip
self.attn_s = attn_s
if self.attn_s:
assert dim_in % dim_head == 0, 'dim should be divisible by num_heads'
self.dim_head = dim_head
self.window_size = window_size
self.num_head = dim_in // dim_head
self.scale = self.dim_head ** -0.5
self.attn_pre = attn_pre
self.qk = ConvNormAct(dim_in, int(dim_in * 2), kernel_size=1, bias=qkv_bias, norm_layer='none',
act_layer='none')
self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, groups=self.num_head if v_group else 1, bias=qkv_bias,
norm_layer='none', act_layer=act_layer, inplace=inplace)
self.attn_drop = nn.Dropout(attn_drop)
else:
if v_proj:
self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, bias=qkv_bias, norm_layer='none',
act_layer=act_layer, inplace=inplace)
else:
self.v = nn.Identity()
self.conv_local = ConvNormAct(dim_mid, dim_mid, kernel_size=dw_ks, stride=stride, dilation=dilation,
groups=dim_mid, norm_layer='bn_2d', act_layer='silu', inplace=inplace)
self.se = SqueezeExcite(dim_mid, rd_ratio=se_ratio,
act_layer=get_act(act_layer)) if se_ratio > 0.0 else nn.Identity()
self.proj_drop = nn.Dropout(drop)
self.proj = ConvNormAct(dim_mid, dim_out, kernel_size=1, norm_layer='none', act_layer='none', inplace=inplace)
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
def forward(self, x):
shortcut = x
x = self.norm(x)
B, C, H, W = x.shape
if self.attn_s:
# padding
if self.window_size <= 0:
window_size_W, window_size_H = W, H
else:
window_size_W, window_size_H = self.window_size, self.window_size
pad_l, pad_t = 0, 0
pad_r = (window_size_W - W % window_size_W) % window_size_W
pad_b = (window_size_H - H % window_size_H) % window_size_H
x = F.pad(x, (pad_l, pad_r, pad_t, pad_b, 0, 0,))
n1, n2 = (H + pad_b) // window_size_H, (W + pad_r) // window_size_W
x = rearrange(x, 'b c (h1 n1) (w1 n2) -> (b n1 n2) c h1 w1', n1=n1, n2=n2).contiguous()
# attention
b, c, h, w = x.shape
qk = self.qk(x)
qk = rearrange(qk, 'b (qk heads dim_head) h w -> qk b heads (h w) dim_head', qk=2, heads=self.num_head,
dim_head=self.dim_head).contiguous()
q, k = qk[0], qk[1]
attn_spa = (q @ k.transpose(-2, -1)) * self.scale
attn_spa = attn_spa.softmax(dim=-1)
attn_spa = self.attn_drop(attn_spa)
if self.attn_pre:
x = rearrange(x, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
x_spa = attn_spa @ x
x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
w=w).contiguous()
x_spa = self.v(x_spa)
else:
v = self.v(x)
v = rearrange(v, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
x_spa = attn_spa @ v
x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
w=w).contiguous()
# unpadding
x = rearrange(x_spa, '(b n1 n2) c h1 w1 -> b c (h1 n1) (w1 n2)', n1=n1, n2=n2).contiguous()
if pad_r > 0 or pad_b > 0:
x = x[:, :, :H, :W].contiguous()
else:
x = self.v(x)
x = x + self.se(self.conv_local(x)) if self.has_skip else self.se(self.conv_local(x))
x = self.proj_drop(x)
x = self.proj(x)
x = (shortcut + self.drop_path(x)) if self.has_skip else x
return x
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
self.iRMB = iRMB(c2, c2)
def forward(self, x):
"""'forward()' applies the YOLO FPN to input data."""
return x + self.iRMB(self.cv2(self.cv1(x))) if self.add else self.iRMB(self.cv2(self.cv1(x)))
class C2f_iRMB(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
🎓三、在YOLOv10添加iRMB代码
🍀🍀1.在modules目录下添加第二章的iRMB代码
(1).在ultralytics/nn/modules目录下,新建一个文件名,我这里取名为iRMB.py,操作如以下截图:

(2).把第二章的代码复制进去,如下图所示:

🍀🍀2.在__init__.py文件导入iRMB模块
文件路径为:ultralytics/nn/modules/init.py
(1)在__init__.py开头注释下面代码,这个步骤注释了以后可以跳过这个步骤

(2)之后开头导入iRMB,导入截图所示
from .iRMB import C2f_iRMB,iRMB

🍀🍀3.在tasks.py文件注册iRMB
(1)在tasks.py文件开头导入所有模块,该文件路径为:ultralytics/nn/tasks.py
在这个文件修改导入方法,改成*号导入,以后无需手动一个个导入新的模块,方便很多,一次性导完,这个步骤改完了,往后的文章就可以跳过这个步骤了,添加如截图所示
from ultralytics.nn.modules import *

(2)之后在这个文件的parse_model方法,添加iRMB,添加如截图所示
elif m in {iRMB}:
args = [ch[f], *args]

看到这里已经成功把改进的模块添加进YOLOv10源码了,接下来配置yaml文件调用改进的模块就行了
🎓四、yaml文件修改
在ultralytics/cfg/models/v10目录下,新建一个yaml文件,复制yolov10n.yaml文件,然后取名为yolov10n-iRMB.yaml
🍀🍀1.第一种添加方法
yolov10n-iRMB.yaml全部代码如下:
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
- [-1, 1, iRMB, [256]] # 23
- [[16, 19, 23], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
🍀🍀2.第二种添加方法
yolov10n-iRMB.yaml全部代码如下:
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f_iRMB, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f_iRMB, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f_iRMB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
🎓五、训练文件修改
🍀🍀1.新建训练文件
在根目录新建一个python文件,取名为:train.py,如果之前看过我的文章,已经新建过就不用重新新建了

🍀🍀2.修改训练文件
YOLOv10训练方式跟YOLOv5是有区别的,但是训练数据集格式跟YOLOv5一样的,你只需把处理好的数据集就行,这里就不在阐述了,废话不多说。
把训练代码复制到train.py文件,如果之前看过我的文章,已经复制过了就不用重新复制了,只需修改参数就行,训练的代码如下:
# -*- coding: utf-8 -*-
"""
@Auth : 挂科边缘
@File :train.py
@IDE :PyCharm
@Motto:学习新思想,争做新青年
@Email :179958974@qq.com
@qq :179958974
"""
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOv10
if __name__ == '__main__':
# model.load('yolov8n.pt') # 加载预训练权重,改进或者做对比实验时候不建议打开,因为用预训练模型整体精度没有很明显的提升
model = YOLOv10(model=r'D:\2-Python\1-YOLO\YOLOv10\yolov10-main\ultralytics\cfg\models\v10\yolov10n.yaml')
model.train(data=r'data.yaml',
imgsz=640,
epochs=200,
batch=4,
workers=8,
device='',
optimizer='SGD',
close_mosaic=10,
resume=False,
project='runs/train',
name='exp',
single_cls=False,
cache=False,
)
根据你训练需求修改指定参数就行,其中圈起来的参数需要你修改的,其他参数根据自己需求选择改或者不改就行。

训练代码的参数解释,标蓝色的参数为常用参数:
1.model参数:该参数填入模型配置文件的路径,改进的话建议不需要预训练模型权重来训练
2.data参数:该参数可以填入训练数据集配置文件的路径
3.imgsz参数:该参数代表输入图像的尺寸,指定为 640x640 像素
4.epochs参数:该参数代表训练的轮数
5.batch参数:该参数代表批处理大小,电脑显存越大,就设置越大,根据自己电脑性能设置
6.workers参数:该参数代表数据加载的工作线程数,出现显存爆了的话可以设置为0。默认填8,可以加快训练
7.device参数:该参数代表用哪个显卡训练,留空表示自动选择可用的GPU或CPU
8.optimizer参数:该参数代表优化器类型
9.close_mosaic参数:该参数代表在多少个 epoch 后关闭 mosaic 数据增强
10.resume参数:该参数代表是否从上一次中断的训练状态继续训练。设置为False表示从头开始新的训练。如果设置为True,则会加载上一次训练的模型权重和优化器状态,继续训练。这在训练被中断或在已有模型的基础上进行进一步训练时非常有用。
11.project参数:该参数代表项目文件夹,用于保存训练结果
12.name参数:该参数代表命名保存的结果文件夹
13.single_cls参数:该参数代表是否将所有类别视为一个类别,设置为False表示保留原有类别
14.cache参数:该参数代表是否缓存数据,设置为False表示不缓存。
训练报错常见的错误:
训练显存报错,出现以下报错情况,把workers参数改为0
(1)OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading “D:\1-ProgramFiles\Anaconda\envs\torch\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll” or one of its dependencies.

(2)RuntimeError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 8.00 GiB total capacity; 530.52 MiB already allocated; 4.87 GiB free; 558.00 MiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

测试一下训练,打印出来的YOLOv10结构可以看到添加改进的模块成功

总结
请在我提供的YOLOv10代码修改,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看
2612

被折叠的 条评论
为什么被折叠?



