YOLOv10改进系列,YOLOv10主干网络引入Retinexformer,用于低光照物体检测

在这里插入图片描述

原论文摘要

在增强低光照图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型没有考虑隐藏在黑暗中或由照亮过程引入的损坏。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,显示出在捕获长程依赖关系方面的局限性。在本文中,提出了一个简单但原则性明确的一阶段Retinex基础框架(ORF)。ORF首先估计照明信息以照亮低光照图像,然后恢复损坏以生成增强图像。我们设计了一个照明引导变换器(IGT),利用照明表示来指导不同光照条件区域的非局部交互建模。通过将IGT插入ORF,即Retinexformer。全面的定量和定性实验表明,Retinexformer在十三个基准测试上显著优于最新的方法。用户研究和低光照物体检测应用也揭示了Retinexformer方法的潜在实用价值。

介绍

该方法的整体架构,正如图(a)所示,我们的Retinexformer基于我们提出的一阶段Retinex框架(ORF)。ORF由一个照明估计器(i)和一个损坏恢复器(ii)组成。我们设计了一个照明引导变换器(IGT)作为损坏恢复器。图(b)中描述了IGT的基本单元是照明引导注意力块(IGAB),它由两个层归一化(LN)、一个照明引导多头自注意力(IG-MSA)模块和一个前馈网络(FFN)组成。图©展示了IG-MSA的细节。
在这里插入图片描述

(a) Retinexformer采用了所提出的ORF框架,该框架由一个照明估计器(i)和一个损坏恢复器(ii) IGT组成。(b) IGT的基本单元是IGAB,它由两个层归一化(LN)、一个IG-MSA和一个前馈网络(FFN)组成。© IG-MSA使用由ORF捕获的照明表示来指导自注意力的计算。

理论详解可以参考链接:论文地址
代码可在这个链接找到:论文地址

本文在YOLOv10中的主干网络引入Retinexformer,用于低光照物体检测,代码已经整理好了,跟着文章复制粘贴,即可直接运行


YOLO(You Only Look Once)是一种目标检测算法,它能够实现实时的目标检测和定位。YOLO+World是指使用YOLO算法进行目标检测,并在自定义数据集上进行训练。 要使用YOLO+World进行训练,需要以下步骤: 1. 数据集准备:首先,你需要准备一个包含目标物体的数据集。这个数据集应该包含图像和相应的标注信息,标注信息可以是边界框(bounding box)和类别标签。确保数据集中的目标物体种类与你想要检测物体种类一致。 2. 标注数据:对于每张图像,你需要手动标注目标物体的边界框和类别标签。可以使用一些标注工具来辅助完成这个过程。 3. 配置YOLO模型:下载YOLO的预训练模型权重文件,并根据你的需求配置YOLO模型的参数,如输入图像尺寸、类别数等。 4. 模型微调:将预训练的YOLO模型加载到网络中,并根据你的数据集进行微调。这个过程通常包括冻结一部分网络层,只训练最后几层或者添加新的全连接层来适应你的数据集。 5. 训练模型:使用准备好的数据集和配置好的模型进行训练。在训练过程中,你可以使用一些优化算法(如随机梯度下降)来调整模型的权重,以最小化目标函数(如交叉熵损失)。 6. 模型评估:在训练完成后,使用测试集对模型进行评估,计算模型在目标检测任务上的性能指标,如准确率、召回率等。 7. 模型应用:训练完成的YOLO+World模型可以用于目标检测任务。你可以将其应用于图像、视频或者实时摄像头输入,实现目标检测和定位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值