YOLOv8改进,YOLOv8添加DiverseBranchBlock(多样分支块),并在C2f结构引入

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述

摘要

一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(Diverse Branch Block,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的同时复杂化了训练时的微观结构,因此它可以作为任何架构的常规卷积层的替代品。通过这种方式,模型可以训练到更高的性能水平,然后转换为原始推理时的结构进行推理。DBB在图像分类(ImageNet上最高提高1.9%的top-1准确率)、目标检测和语义分割方面提高了ConvNet的性能。

DiverseBranchBlock介绍

多样分支块(DiverseBranchBlock)的代表性设计如下图所示:
在这里插入图片描述
1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1 - K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。
2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积。给定一个架构,可以用DBB替换一些常规卷积层,以构建更复杂的训练微观结构,并将其转换回原始结构,这样在推理时不会有额外的成本。

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

本文在YOLOv8中添加DiverseBranchBlock(多样分支块),并在C2f结构引入,代码已经整理好了,跟着文章复制粘贴,即可直接运行


YOLOv8是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。YOLOv8结合了YOLOv3和YOLOv4的优点,并进行了改进和优化。DBB(Dynamic Bounding Box)是YOLOv8中的一种改进技术,用于提高目标检测的准确性和稳定性。 下面是使用YOLOv8DBB进行目标检测的示例代码: ```python # 导入所需的库 import cv2 import numpy as np # 加载YOLOv8模型 net = cv2.dnn.readNetFromDarknet('yolov8.cfg', 'yolov8.weights') # 获取输出层的名称 layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # 加载图像 image = cv2.imread('image.jpg') # 对图像进行预处理 blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) # 运行YOLOv8模型 outs = net.forward(output_layers) # 解析输出结果 class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: # 目标框的位置和大小 center_x = int(detection[0] * image.shape[1]) center_y = int(detection[1] * image.shape[0]) width = int(detection[2] * image.shape[1]) height = int(detection[3] * image.shape[0]) # 目标框的左上角坐标 x = int(center_x - width / 2) y = int(center_y - height / 2) # 保存目标框的信息 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, width, height]) # 使用DBB对目标框进行调整 for i in range(len(boxes)): x, y, width, height = boxes[i] x = int(x - width / 2) y = int(y - height / 2) width = int(width * 2) height = int(height * 2) boxes[i] = [x, y, width, height] # 绘制目标框和类别标签 for i in range(len(boxes)): x, y, width, height = boxes[i] cv2.rectangle(image, (x, y), (x + width, y + height), (0, 255, 0), 2) label = str(class_ids[i]) cv2.putText(image, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # 显示结果图像 cv2.imshow('YOLOv8 + DBB', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码使用YOLOv8模型和DBB技术对一张图像进行目标检测,并在图像上绘制出检测到的目标框和类别标签。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值