YOLOv11改进,YOLOv11添加CA注意力机制,二次创新C2f结构

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述


摘要

在本文中,提出了一种新的移动网络注意力机制,将位置信息嵌入到信道注意力中称之为“协调注意力”。与渠道关注不同通过 2D 全局池将特征张量转换为单个特征向量,坐标注意力因子将通道注意力转化为两个 1D 特征编码过程,这两个过程分别沿着两个空间方向聚合特征。通过这种方式,可以沿着一个空间方向捕获长程依赖性和均值,同时可以沿着另一个空间方向。生成的特征图为然后分别编码为一对方向感知和位置敏感注意力图,其可以被完全应用于输入特征图以增加感兴趣对象的表示。坐标保持简单,可以灵活插入经典网络。


模型细节

CA注意力块(c)与经典的 SE 通道注意力块 (a) 和 CBAM (b) 的示意图比较。这里,“GAP”和“GMP”分别指全局平均池化和全局最大池化。“X Avg Pool”和“Y Avg Pool”分别指一维水平全局池化和一维垂直全局池化。

在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

下文都是手把手教程,跟着操作即可添加成功


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值