YOLOv8改进,YOLOv8引入GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构


在这里插入图片描述


摘要

实时目标检测在工业和研究领域中具有重要意义。在边缘设备上,巨大的模型难以满足实时检测的要求,而由大量深度可分离卷积(depth-wise separable convolution)构建的轻量级模型又无法达到足够的精度。作者引入了一种新的轻量级卷积技术——GSConv,以减轻模型重量同时保持精度。GSConv 在精度和速度之间实现了出色的平衡。此外,作者基于 GSConv 提出了一个设计方案——Slim-Neck (SNs),以实现实时检测器的更高计算成本效益。
在这里插入图片描述


理论介绍

GSConv 是一种轻量级的卷积技术,旨在提高计算效率的同时,保持足够的精度。是对深度可分卷积(DSC)的优化。

  • 深度可分卷积(DSC):这种卷积方法将卷积操作分为两部分:首先是深度卷积(对每个输入通道单独进行卷积),然后是1x1的卷积(用于混合不同通道的输出)。虽然这种方法减少了计算量和参数,但它在特征表达能力上存在局限,因为它将通道之间的信息分离开来,导致特征融合能力较弱。
  • GSConv的创新:为了克服DSC的这一缺点,GSConv 将标准卷积(SC)和深度卷积(DSC)结合,通过“洗牌”操作(shuffle)将标准卷积生成的特征与深度卷积生成的特征混合,从而增强特征之间的联系,避免了深度卷积中通道信息的孤立。这使得GSConv 在计算效率和特征表达能力之间取得了良好的平衡。

Slim-neck 是一种基于 GSConv 的优化设计,专门针对实时目标检测器的结构,旨在提高计算效率和减少内存消耗。具体来说,Slim-neck 主要作用于网络的“颈部”部分,即特征融合的阶段。Slim-neck 的设计目标是通过在网络的“颈部”使用 GSConv,保持精度的同时提高推理速度。这里的“颈部”通常指的是网络中用于特征融合和处理的部分,它在目标检测中起着至关重要的作用。通过使用 GSConv,Slim-neck 可以在不牺牲性能的情况下,减少冗余的信息和不必要的计算,从而提高整体效率。下图摘自论文:
在这里插入图片描述
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

下文都是手把手教程,跟着操作即可添加成功


### 改进YOLOv8中的C2F模块使用ODConv #### 背景介绍 为了提高YOLOv8目标检测性能,在主干网络中引入了基于多维注意力机制的动态卷积方法——ODConv。这种方法不仅增强了特征提取能力,还提高了计算效率[^1]。 #### C2f_ODConv的设计原理 ODConv通过结合全面的多维注意机制来增强动态卷积的效果。具体来说,这种设计允许模型沿着核空间的不同维度(如通道、位置等)学习更加丰富的表示形式,进而改善整体表现。对于C2f结构而言,这意味着可以在保持原有架构优势的同时进一步提升其灵活性和适应性[^2]。 #### 代码实现细节 要在YOLOv8框架内集成C2f_ODConv组件,主要涉及以下几个方面: - **定义新的层类**:创建继承自`nn.Module`的新Python类用于封装特定于C2f_ODConv的操作逻辑; - **修改配置文件**:更新`.yaml`格式的网络定义文档以反映新增加的功能特性; - **调整训练流程**:确保新加入的部分能够被正确初始化以及参反向传播过程。 以下是简化版的C2f_ODConv PyTorch实现示例: ```python import torch.nn as nn from odconv import ODConv2d # 假设已经安装好odconv库 class C2f_ODConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, reduction_ratio=4): super(C2f_ODConv, self).__init__() if not padding: padding = (kernel_size - 1) // 2 self.od_conv = ODConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, reduction_ratio=reduction_ratio) def forward(self, x): return self.od_conv(x) # 示例用法 if __name__ == "__main__": input_tensor = torch.randn((1, 64, 256, 256)) c2f_odconv_layer = C2f_ODConv(64, 128) output_tensor = c2f_odconv_layer(input_tensor) print(output_tensor.shape) ``` 此段代码展示了如何构建一个简单的C2f_ODConv层,并测试输入张量经过该层处理后的形状变化情况。实际应用时还需要根据具体的项目需求对参数设置做出相应调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值