YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

69 篇文章 ¥199.90 ¥299.90

在这里插入图片描述


摘要

一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合 (ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。


# 理论介绍

目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适应融合权重,过滤掉无用的或冲突的信息,只保留有助于检测的特征,从而提高特征的尺度不变性。ASFF核心步骤如下:

  • 特征重缩放:首先将不同层次的特征进行上采样或下采样,使它们具有相同的分辨率。

  • 自适应融合:对每个层次的特征,模型学习空间位置的权重参数,自动决定每个位置该融合哪些特征,并通过Softmax函数保证权重总和为1。融合后的特征用于目标检测。

  • 梯度一致性优化:通过自适应融合,ASFF能够在梯度传播过程中减少不同特征层之间的冲突,优化训练过程中的梯度一致性

ASFF自适应空间特征融合机制的工作原理如下图(摘自论文):
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

下文都是手把手教程,跟着操作即可添加成功


### ASFF模块介绍 自适应空间特征融合(Adaptive Spatial Feature Fusion, ASFF)是一种用于提升目标检测模型性能的技术。该技术使得网络可以学习如何在不同的特征层次上进行有效的空间过滤,从而仅保留有用的信息进行组合[^4]。 具体来说,在每一层的特征处理过程中,来自其他层的特征会被融合并调整至相同的空间分辨率。随后,通过训练过程来获得最佳的特征融合方式。这种机制允许在同一空间位置上的不同层次特征之间实现自适应融合:一些携带冲突信息的特征将被自动过滤掉;相反,那些具有更强辨别力的特征会占据主导地位。 ### 使用方法 为了定义ASFF模块并将其实现于YOLOv8架构中,以下是具体的实践指南: #### 实现动态特征融合和注意力机制 ```python import torch.nn as nn class ASFF(nn.Module): def __init__(self, level=0, multiplier=1.0): super().__init__() self.level = level # 动态权重计算部分... def forward(self, features_list): # 特征融合逻辑... pass ``` 这段代码展示了`ASFF`类的基本框架,其中包含了初始化函数以及前向传播路径中的核心操作——即接收一个多尺度特征列表作为输入,并返回经过优化后的单个输出张量[^1]。 #### 构建 `ASFFYOLOv8Head` 类 接下来是创建一个新的头部组件(`ASFFYOLOv8Head`),它继承自原始版本的同时引入了上述提到的`ASFF`模块: ```python from yolov8.models.heads import YOLOv8Head class ASFFYOLOv8Head(YOLOv8Head): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # 初始化ASFF实例... def forward(self, x): # 首先获取backbone提取出来的多尺度特征图 feats = backbone(x) # 应用ASFF模块来进行跨尺度特征融合 fused_feat = self.asff_module(feats) # 将融合后的特征传递给后续的标准YOLO head结构继续处理 out = super().forward(fused_feat) return out ``` 此段代码说明了如何修改原有的YOLO v8头部设计以支持新的特性融合策略。这里的关键在于利用之前定义好的`ASFF`对象对由骨干网产生的多个尺度下的特征表示进行了增强型聚合。 ### 性能对比 实验结果显示,当采用Yolov3加上改进版的ASFF模块之后,在多种评估指标方面均优于传统的单一阶段(one-stage)和两阶段(two-stage)的目标检测方案[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值