香橙派AIpro测评上手指南

一、前言

首先非常荣幸受到邀请参加本次香橙派开发板的测评活动,除了令人眼前一亮,做工非常精细的开发板,举办方还非常贴心地准备了散热套件,以及烧录好系统的TF卡,甚至准备了电源适配器,数据线;再加上官网有详尽的资料,让整个体验过程很是愉快。
下面让我们进入主题,先来一张产品套件全家福:
在这里插入图片描述

盒子内就是我们的主角OrangePi AIpro 开发板,主板上下都有泡沫缓冲垫,主板使用防静电包装,保护措施很完善:
[图片]

推荐资料:
香橙派官网
昇腾论坛 香橙派AIpro专题页

二、产品简介

OrangePi AIpro 开发板是香橙派联合华为精心打造的高性能 AI 开发板,其搭载了一颗高性能4核64位CPU+昇腾 AI 处理器,集成图形处理器,支持8TOPS AI算力,内存提供了 8GB 和 16GB LPDDR4X两种版本,可以外接最高 256GB eMMC模块,支持双4K高清HDMI输出,板载WiFi5+BLE4.2集成模块。
[图片]

OrangePi AIpro引出了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖AIoT各个行业。
[图片]

[图片]

OrangePi AIpro目前已经支持操作系统有Ubuntu、openEuler,基本满足大多数AI算法原型验证、推理应用开发的需求。

三、连接测试

本次拿到的开发板由于已经在TF卡中烧写了系统,因此这里我们不再探究烧写系统过程,有兴趣的可以参考《OrangePi_AI_Pro_昇腾_用户手册》第2.4节 烧写 Linux 镜像到 TF 卡中的方法,讲解很详细。

3.1 串口连接

为什么把串口连接方式放在最前面,因为这种方式最简单,不需要网线,也不需要屏幕。
首先需要安装如下USB转串口驱动:
https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/OrangePi/private/CH343SER.EXE
再找到Micro USB 接口的数据线通过如下接口连接电脑(注意看丝印UART):
[图片]

PC上打开MobaXterm,新建串口连接,选择CH343的USB串口,波特率填写为115200
在这里插入图片描述

如果在给开发板上电前打开串口,就可以抓到开机LOG:
在这里插入图片描述

输入用户名和密码就可以登录了:
[图片]

以root用户登录成功:
在这里插入图片描述

可以看到当前安装的是Ubuntu 22.04.3 LTS版本。

3.2 VNC连接

该方法适合没有HDMI屏幕但想通过桌面方式使用的朋友。
通过下面的命令检查vnc服务是否开启
ps -ef | grep vnc
可以看到有以Xtightvnc开头的进程,说明VNC服务已经启动。
[图片]

通过网线将开发板的网孔连接到路由器上,串口连接的情况下输入ifconfig命令查看当前开发板的IP地址
[图片]

PC端下载VNC Viewer软件或者就使用MobaXterm的VNC连接功能也行;
[图片]

密码是默认的Mind@123
连接成功后:
[图片]

3.3 SSH连接

该方法相比只串口连接的好处在于通过网线和PC处于同一网段这样可以很方便地传文件。
SSH连接可以使用putty,这里我直接用了MobaXterm里的SSH连接功能:
填写好IP地址后,默认22端口即可
[图片]

还需要输入登录账号和密码,直接用默认的HwHiAiUser账号登录:
[图片]

四、硬件配置

lscpu查看CPU信息,可见开发板搭载的是一颗64位4核CPU,具体型号不详
[图片]

npu-smi info命令可以查看昇腾芯片 NPU 卡的信息,Device为310B4,芯片温度为46度
[图片]

df-h查看磁盘的空间,开发板使用32G内存卡作为硬盘
[图片]

free -m查看物理内存的大小和使用情况,Mem项显示物理内存一共7545MB,手头这个版本是8G内存的,还有16G版本可选
[图片]

五、AI功能体验

官方镜像中预装了 Jupyter Lab 软件,并且预置了一些可以在 Jupyter Lab 软件中运行的 AI 应用样例。

JupyterLab作为一种基于Web的集成开发环境,可以使用它编写Notebook、操作终端、Markdown文本、打开交互模式、查看CSV文件及图片等功能。JupyterLab的执行文件被称作Notebook,它的后缀是.ipynb

切换到样例目录下:

cd /home/HwHiAiUser/samples/notebooks

[图片]

执行 start_notebook.sh 脚本启动 Jupyter Lab
启动成功后,复制登录 Jupyter Lab 的网址链接到浏览器中打开(注意是香橙派上的浏览器不是PC端的)
[图片]

登录 Jupyter Lab 后的界面如下所示, 左侧文件管理器中是 9 个 AI 应用样例和Jupyter Lab 启动脚本:
[图片]

样例1、YOLOv5目标检测

在 jupyter lab 界面双击“01-yolov5” , 进入到该目录,再双击打开 main.ipynb, 在右侧窗口中会显示 main.ipynb 文件中的内容,按下图所示点击双三角符号运行样例:

[图片]

往下翻到“样例运行”小节,等待几秒后会展示识别结果:
在这里插入图片描述

这是一段赛车短视频,可以看到视频中出现的赛车都被识别出来了。
在 main.ipynb 文件中 infer_mode 的值可赋值为 image、 video 和 camera, 分别对应对图片、 视频、 USB 摄像头中的内容进行目标检测, 默认值为 video。
接下来我们尝试图片推理,infer_mode 的值改为image,并且img_path改为我们导入的图片
[图片]

识别小狗(只识别出其中两只):
[图片]

样例2、OCR文字识别

回到主目录,再双击“02-ocr” , 进入到该目录,再双击打开 main.ipynb,找到IMAGE_PATH,改成我们自己导入的图片名进行测试
[图片]

点击restart,等待结果:
[图片]

这是随便找的图片,可以看到还是成功识别出来了大部分,已经算是不错的了,要知道我们用专业的文字扫描软件也常有误判,这个跟字体,模型有关系。

样例3、cartoonGAN模型生成卡通图像

双击“05-cartoonGAN_picture ”,双击打开 main.ipynb,点击restart运行,等待结果:
转换前:
[图片]

转换后:
[图片]

Tips

1、开发板上有2个按键分别是关机按键和复位按键,当机器出现问题死机了可以按关机按键进行关机。但该按键没有开机功能,在关机状态下想开机可以按一下RESET按键也可以开机
[图片]

2、机器刚开机时风扇会全速运行一小段时间,进入系统后切到自动调速模式风速就慢下来了
sudo npu-smi info -t pwm-mode

使用该命令可以查看风扇当前的模式是自动模式还是手动模式,一般默认是自动模式。
我的这块板子的自动模式不知为什么不起作用,板子开机一会后即使很烫了风扇也只能保持15的百分比速度运行而不会随温度变化。后来我切换到手动模式,手动调速到50%就没问题了,板子温度很快就降下来了
设置风扇模式为手动模式的命令如下:
sudo npu-smi set -t pwm-mode -d 0

设置风扇的调速比为50:
sudo npu-smi set -t pwm-duty-ratio -d 50
另外,设置的模式和调速比都有记忆功能,下次开机还是上次的配置。

使用感受

OrangePi AIpro 开发板是一款非常优秀的 AI 边缘计算开发板,其推进了 AI 部署的国产化进程,其算力是完全满足商业级产品的需求。经过这几天的使用,我认为香橙派AIpro是一款性能强劲,并且在AI算力上也是可圈可点,最高16G的LPDDR4X内存令树莓派等等熟知的Linux系列开发板望尘莫及,接口非常丰富,尤其是官方配备的散热器,风扇静音效果极佳且风力很强,散热效果很好,50%的转速就已经满足日常使用,该风扇可CPU智能控制转速,这项功能在一众开发板中也是独占鳌头。
香橙派官方为这款开发板准备了详细的资料供开发者阅读,其中用户手册的细节程度非常夸张,让我在整个体验过程上手非常顺畅。
在这款芯片上的核心部件中,出现了不少国产芯片的加入,在可预见的未来,希望我国科技实力和产业实现新的飞跃,让国产化更上一层楼。

<think>嗯,用户想了解如何使用香橙AIPro 20T进行开发或配置。首先,我需要整理相关资料。根据提供的引用内容,香橙AIPro 20T搭载了昇腾AI处理器,支持20TOPS INT8计算能力,内存有12GB和24GB版本,适用于教育、机器人、无人机等场景。另外,环境配置和基础应用的测评中提到高性价比、开源社区支持以及丰富的产品线。 用户可能需要从基础配置开始,比如系统安装、开发环境搭建、AI应用开发等步骤。引用中提到有Ubuntu和OpenEuler两种系统可选,需要指导用户下载镜像并安装。然后,开发环境配置部分应该包括CANN套件和Python库的安装,因为昇腾处理器依赖这些工具。还要提到基础应用,比如图像分类的示例,这样用户能快速上手。 此外,用户可能关心资源获取和社区支持,所以需要列出官网、论坛、文档和技术支持的链接。可能的问题包括硬件接口使用、性能优化方法,以及与其他开发板的对比,这些可以作为相关问题推荐。 需要注意按照系统指令,数学公式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学公式,但如果有性能参数如20TOPS,可能需要用行内公式表示。不过引用中已经明确写出20TOPS,可能不需要额外公式。确保回答结构清晰,分步骤说明,并引用提供的资料作为支持。</think>### 香橙 AIPro 20T 开发配置指南 以下是基于香橙 AIPro 20T 的开发与配置流程,结合其硬件特性和开源资源[^2][^3]: --- #### **一、基础环境配置** 1. **系统安装** - 下载官方镜像:支持 Ubuntu 20.04 或 OpenEuler 系统,需从[香橙官网](https://www.orangepi.org/)获取镜像文件[^1]。 - 使用工具(如 BalenaEtcher)将镜像烧录至 MicroSD 卡,插入开发板启动。 2. **开发环境搭建** - **CANN 套件安装**:昇腾 AI 处理器依赖华为的 CANN(Compute Architecture for Neural Networks)工具包,需通过命令行安装: ```bash wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/<版本号>/Ascend-cann-toolkit_<版本号>_linux-aarch64.run sudo ./Ascend-cann-toolkit_<版本号>_linux-aarch64.run --install ``` - **Python 库支持**:安装 MindSpore 或 PyTorch 的昇腾适配版本,例如: ```bash pip install mindspore-ascend ``` --- #### **二、基础应用开发示例** 以下以图像分类为例说明开发流程: ```python # 示例:使用昇腾 NPU 加速的 ResNet 模型推理 from mindspore import context, load_checkpoint from mindspore.model_zoo.resnet import resnet50 # 设置昇腾硬件环境 context.set_context(device_target="Ascend") model = resnet50(pretrained=False) load_checkpoint("resnet50.ckpt") # 加载预训练模型 # 执行推理 output = model.predict(input_data) # input_data 需预处理为张量 ``` --- #### **三、资源与支持** 1. **文档与工具** - 官方文档:详细接口说明和案例参考[香橙 AIPro 开发手册](https://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-AIpro.html)。 - 模型库:华为昇腾社区提供预训练模型和优化工具。 2. **硬件接口使用** - 通过 40-pin GPIO 连接传感器或执行器,支持 UART/I2C/SPI 协议。 - 双 Type-C 接口支持 OTG 模式和 10Gbps 数据传输。 --- #### **四、性能优化建议** - **内存管理**:24GB 版本适合大规模模型推理,可通过 `npu-smi` 工具监控显存占用。 - **多线程并行**:利用昇腾处理器的多核特性,通过 OpenMP 或 Python 多进程提升吞吐量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾爱技术圈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值