高翔视觉slam十四讲学习(3)

第三章 李群与李代数(第四讲)

1. 李群与李代数的概念

1.1 群(Group):是一种集合加上一种运算的代数结构。把集合记作A,运算记作.,则群可记作G=(A,.)。

群满足以下几个条件:

群性质

矩阵中常见的群有:

常见群

李群:是指具有连续(光滑)性质的群。

李代数:每个李群都有与之对应的李代数。李代数描述了李群的局部性质(导数)。

李代数定义与性质

其中二元运算称为李括号。

 

1.2 李代数

1.2.1 李代数\mathfrak{so}(3):定义在\mathbb{R}^{3}上的向量,记作\phi,每个\phi都可以生成一个反对称矩阵

\Phi =\phi^{\wedge }=\begin{bmatrix} 0 & -\phi_{3} &\phi_{2} \\ \phi_{3}& 0 &-\phi_{1} \\ -\phi_{2}&\phi_{1} &0 \end{bmatrix}

李代数\mathfrak{so}(3)的李括号为:

[\phi_{1},\phi_{2}]=(\Phi_{1}\Phi_{2}-\Phi_{2}\Phi_{1})^{\vee }

由于\phi与反对称矩阵关系很紧密,在不引起歧义的情况下,就说 \mathfrak{so}(3)的元素是 3 维向量或者 3 维反对称矩阵,不加区别:

\mathfrak{so}(3)=\begin{Bmatrix} {\phi \in \mathbb{R}^{3},\Phi=\phi^{\wedge}\in \mathbb{R}^{3\times 3}} \end{Bmatrix}

\mathfrak{so}(3)是一个由三维向量组成的集合,每个向量对应到一个反对称矩阵,可以表达旋转矩阵的导数,它与SO(3)(旋转矩阵)的映射关系为:

R=\exp(\phi^{\wedge})

 

1.2.2 李代数\mathfrak{se}(3):对应于SE(3)(变换矩阵T)的李代数

\mathfrak{se}(3)=\left \{ \xi =\begin{bmatrix} \rho \\ \phi \end{bmatrix} \in \mathbb{R}^{6},\rho \in \mathbb{R}^{3},\phi \in so(3).\xi ^{\wedge}=\begin{bmatrix} \phi ^{\wedge} &\rho \\ 0^{T}&0 \end{bmatrix}\in \mathbb{R}^{4\times 4} \right \}

\mathfrak{se}(3)元素记作\xi,它是一个六维向量。前三维为平移,记作\rho,后三维为旋转,记作\phi(实质上是\mathfrak{so}(3)元素)

注意这里的\wedge符号表示六维向量向四维矩阵的转换(此四维矩阵不为反对称矩阵,是变换矩阵吗?)

李代数\mathfrak{se}(3)的李括号为

[\xi _{1},\xi_{2}]=(\xi_{1}^{\wedge}\xi_{2}^{\wedge}-\xi_{2}^{\wedge}\xi_{1}^{\wedge})^{\vee}

 

2. 指数与对数映射(李群与李代数之间的转换)

 

2.1

SO(3)上的指数映射(罗德里格斯公式)(基于泰勒展开)

\exp(\phi^{\wedge})= \sum_{n=0}^{\infty}\frac{1}{n!}A^{n}\\ \exp(\phi^{\wedge})=\exp(\theta a^{\wedge})^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}\(\theta a^{\wedge})^{n}=\cos I+(1-\cos \theta)aa^{T}+\sin \theta a^{\wedge}

SO(3)上的对数映射

\begin{align} \nonumber &\theta =\arccos \frac{tr(R)-1}{2}\\\nonumber &Ra=a \end{align}

 

2.2

SE(3)上的指数映射

\begin{align} \exp(\xi^{\wedge})&=\begin{bmatrix} \sum\limits_{n=0}^{\infty}\frac{1}{n!} (\phi^{\wedge})^{n} &\sum\limits_{n=0}^{\infty}\frac{1}{(n+1)!} (\phi^{\wedge})^{n}\rho \\\nonumber 0^{T} &1 \end{bmatrix}\\\nonumber &\overset{\bigtriangleup }{=} \begin{bmatrix} R &J\rho \\ 0^{T} &1 \end{bmatrix} =T \end{align}

\xi的指数映射左上角的RSO(3)中的元素,与\mathfrak{se}(3)中的旋转部分\phi对应,设\phi =\theta aJ可整理为:

J=\frac{\sin\theta}{\theta}I+(1-\frac{\sin\theta}{\theta})aa^{T}+\frac{1-\cos\theta}{\theta}a^{\wedge}

我们看到,平移部分经过指数映射之后,发生了一次以 J为系数矩阵的线性变换。

SE(3)上的指数映射

\begin{align} \nonumber &\theta =\arccos \frac{tr(R)-1}{2}\\\nonumber &Ra=a \\\nonumber &t=J\rho \end{align}

总结

对应关系

 

3. 李代数求导与扰动模型

3.1 左乘、右乘近似

BCH公式(Baker-Campbell-Hausdorff公式)与近似形式

BCH公式:

\ln(\exp(A)\exp(B))=A+B+\frac{1}{2}[A,B]+\frac{1}{12}[A,[A,B]]-\frac{1}{12}[B,[A,B]]+...

BCH 公式告诉我们,当处理两个矩阵指数之积时,它们会产生一些由李括号组成的余项。特别地,考虑SO(3)上的李代数\ln(\exp(\phi_{1}^{\wedge})\exp(\phi_{2}^{\wedge}))^{\vee},当\phi_{1}\phi_{2 }为小量时,小量二次以上的项都可以被忽略掉。此时,BCH 拥有线性近似表达:

ln(\exp(\phi_{1}^{\wedge})\exp(\phi_{2}^{\wedge}))^{\vee}\approx \left\{\begin{matrix} J_{l}(\phi_{2})^{-1}\phi_{1}+\phi_{2}\ \ if\ \phi_{1}\ is\ small \\ J_{r}(\phi_{1})^{-1}\phi_{2}+\phi_{1} \ \ if\ \phi_{2}\ is\ small \end{matrix}\right.

以第一个近似为例。该式告诉我们,当对一个旋转矩阵R_{2}(李代数为\phi_{2})左乘一个微小旋转矩阵R_{1}(李代数为\phi_{1})时,可以近似地看作,在原有的李代数\phi_{2}上,加上了一项J_{l}(\phi_{2})^{-1}\phi_{1} 。同理,第二个近似描述了右乘一个微小位移的情况。于是,李代数在 BCH近似下,分成了左乘近似和右乘近似两种。以左乘为例,其中

\begin{align}\nonumber &J_{l}=J=\frac{\sin \theta}{\theta}I+(1-\frac{\sin \theta}{\theta})aa^{T}+\frac{1-\cos \theta}{\theta}a^{\wedge}\\\nonumber &J_{l}^{-1}=\frac{\theta}{2} \cot \frac{\theta}{2}I+(1-\frac{\theta}{2} \cot \frac{\theta}{2})aa^{T}-\frac{\theta}{2}a^{\wedge} \\\nonumber &J_{r}(\phi)=J_{l}(-\phi) \end{align}

 

3.2 扰动模型求导

SO(3)李代数上的求导

我们经常会构建与位姿有关的函数,然后讨论该函数关于位姿的导数,以调整当前的估计值。

扰动模型(左乘)

\begin{align}\nonumber \frac{\partial (Rp)}{\partial (\varphi)}&= \lim_{\varphi\rightarrow 0}\frac{\exp (\varphi ^{\wedge})\exp (\phi^{\wedge})p-\exp (\phi^{\wedge})p}{\varphi} \\\nonumber &\approx \lim_{\varphi\rightarrow 0}\frac{(1+\varphi^{\wedge})\exp (\phi^{\wedge})p-\exp (\phi^{\wedge})p}{\varphi} \\\nonumber &=\lim_{\varphi \rightarrow 0} \frac{\varphi^{\wedge}Rp}{\varphi}\\\nonumber &=\lim_{\varphi \rightarrow 0} \frac{-(Rp)^{\wedge}\varphi}{\varphi}\\\nonumber &=-(Rp)^{\wedge} \end{align}

 

SE(3)李代数上的求导

扰动模型(左乘)

\begin{align} \nonumber \frac{\partial(Tp)}{\partial \delta \xi }&= \begin{bmatrix} I & -(Rp+t)^{\wedge}\\ 0^{T}& 0^{T} \end{bmatrix}\\\nonumber &\overset{\bigtriangleup }=(Tp)^{\bigodot } \end{align}

我们把最后的结果定义成一个算符⊙­,它把一个齐次坐标的空间点变换成一个 4 × 6的矩阵。

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值