通用导航大模型NaviLLM《Towards Learning a Generalist Model for Embodied Navigation》

论文

代码

摘要

构建一个能够与世界互动的通用代理是人工智能系统的有趣目标,因此刺激了具身导航的研究,在具身导航中,代理需要根据指令导航或响应查询。尽管取得了重大进展,但以前的工作主要集中在特定于任务的代理上,而缺乏对看不见的场景的概括性。最近,llm在各个领域都展示了卓越的能力,并为具体化导航提供了一个很有希望的机会。基于此,我们提出了第一个具身导航的通用模型,NaviLLM。它通过引入基于模式的指令,使llm适应于具体化导航。基于模式的指令灵活地将各种任务转换为生成问题,从而统一了广泛的任务。这种方法允许我们将来自不同数据集的不同数据源集成到训练中,为NaviLLM配备了具体化导航所需的广泛能力。我们进行了广泛的实验来评估我们的模型的性能和可推广性。实验结果表明,我们的统一模型在CVDN、SOON和ScanQA上都取得了最先进的性能。具体来说,它在CVDN上的目标进展方面显著超过了之前最先进的统计方法29%。此外,我们的模型还展示了很强的通用性,并在看不见的任务上显示了令人印象深刻的结果,例如具身问答和3D描述。

方法

NaviLLM是一个基于LLM的具身模型,包括两个模块,即一个视觉编码器和一个LLM。视觉编码器将当前的视觉观察作为输入,并将其转换为一系列的场景表示。利用这些场景表示,我们为不同的任务构造不同的模式,这些模式作为LLM的输入,以产生下一步反馈。

视觉编码

场景编码器提取场景表示,给予一个由一组图像\{I_i\},i=1,..,n组成的观察,每个图像代表一个独特的viewpoint。视觉编码器最初通过视觉转换器(ViT)提取每个单独图像的视觉特征。然后,这些来自不同viewpoint的特征通过多视图融合过程进行集成,产生场景表示\{s_i\},i=1,..,n

VIT会先对每个图像提取特征,然后所有特征进行transformer的融合,形成场景表示\{s_i\},i=1,..,n。为了增强场景表示,我们还将每个视图的角度和GPS信息合并到场景编码中。

基于模式的指令

我们将基于模式的指令扩展到多模态建模,从而使其能够消化多模态信息。我们的模式被设计为一个统一的格式,可以适应不同的数据源,并为广泛的任务提供灵活性。

任务:确定目前任务类型,它由代理期望执行的单词序列组成,它可以以各种形式显示,如导航指令、需要查找的不可见对象或用户提出的问题。

观察:这是指在代理当前位置的视觉观察。为了区分不同视图之间的表示,我们在每个表示前加上一个ID,记为

历史:记录了前t步的观察。这个模式提供了一个时间上下文,帮助代理理解其在环境中的过去轨迹,以及与每个决策相关的视觉反馈。给定历史表示\{h_i\},i=1,..,t,我们在每个表示前加上一个ID,以表示过去观察的顺序。

输出提示:该模式提示代理期望产生的输出信息,例如,要移动的期望视点的标识符、对问题的回答,或对前一个轨迹的摘要。此模式可帮助模型理解如何生成与任务需求相一致的操作。

多任务学习

任务有以下几类:

视觉语言导航(VLN)要求代理在3D环境中导航,以完成给定的任务。我们提出了VLN的模式如下:

  • 任务:一种带有简短任务说明的导航指令。
  • 观察:在当前位置上的所有可达视点的场景表示。
  • 输出提示:例如,从观察中选择一个方向。

LLM将上述模式作为输入,以预测要移动的视点的ID,其中的ID是一个数字。随着代理移动时,历史表示将被更新为与代理最近选择的视点对应的场景表示。

目标定位。它需要在代理成功到达目标后,从一组可见对象中识别出正确的对象。除了历史记录模式之外,它还包含以下模式:

  • 任务:一个目标定位命令。
  • 观察:在当前位置上的所有可见对象的观察。
  • 对象表示从预先训练过的ViT中提取,随后转换为与单词嵌入相同的维度。
  • 输出提示:例如,从观察中选择一个对象。

使用这个模式,代理需要生成所选对象的ID。

轨迹总结。我们遵循[22],包括从给定的轨迹中合成指令的任务。对于此任务,它将历史记录和观察模式共享信息,其中历史记录模式根据数据集是可选的。除了这两个信息之外,我们还包括:

  • 任务:对总结风格的简明描述,例如,细粒度和粗粒度。
  • 输出提示:例如,总结上述轨迹

3D问答(3D-QA)要求代理在3D场景中回答一个问题。与以前的任务不同,在此任务中,不需要使用历史记录模式。本文为3D-QA提供了以下模式。

  • 任务:一个关于室内场景的问题。
  • 观察:来自不同位置的图像的场景表示。我们还利用了前面的场景编码来处理场景表示。
  • 输出提示:例如,根据现场回答这个问题。该模型要求基于上述模式生成一个文本答案。

具身问答(EQA)。代理被要求首先导航到一个问题所引用的位置,然后相应地回答这个问题。我们分别阶段地使用了VLN和3D-QA的模式。

实验

Adversarial attacks are a major concern in the field of deep learning as they can cause misclassification and undermine the reliability of deep learning models. In recent years, researchers have proposed several techniques to improve the robustness of deep learning models against adversarial attacks. Here are some of the approaches: 1. Adversarial training: This involves generating adversarial examples during training and using them to augment the training data. This helps the model learn to be more robust to adversarial attacks. 2. Defensive distillation: This is a technique that involves training a second model to mimic the behavior of the original model. The second model is then used to make predictions, making it more difficult for an adversary to generate adversarial examples that can fool the model. 3. Feature squeezing: This involves converting the input data to a lower dimensionality, making it more difficult for an adversary to generate adversarial examples. 4. Gradient masking: This involves adding noise to the gradients during training to prevent an adversary from estimating the gradients accurately and generating adversarial examples. 5. Adversarial detection: This involves training a separate model to detect adversarial examples and reject them before they can be used to fool the main model. 6. Model compression: This involves reducing the complexity of the model, making it more difficult for an adversary to generate adversarial examples. In conclusion, improving the robustness of deep learning models against adversarial attacks is an active area of research. Researchers are continually developing new techniques and approaches to make deep learning models more resistant to adversarial attacks.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值