综述:大语言模型在机器人导航中的最新进展!

  1. 简介
    机器人导航是指机器人能够在环境中自主移动和定位的能力。本文系统地回顾了基于大语言模型(LLMs)的机器人导航研究,将其分为感知、规划、控制、交互和协调等方面。具体来说,机器人导航通常被视为一个几何映射和规划问题,需要机器人对环境进行参数化处理。从早期的基于模型的方法到最近的深度学习和强化学习方法的进步,机器人导航技术取得了显著进展。例如,Leonard等人利用扩展卡尔曼滤波器在已知环境中进行移动机器人的导航,而Hu等人则通过识别地标和动态提取的环境特征进行导航。随着技术的进步,研究人员开始将机器学习融入导航系统中,使系统能够基于现实世界的经验做出决策,并考虑其行为的物理后果。然而,这些方法通常数据密集且缺乏可解释性,使得进一步的调试和改进变得困难。因此,许多基于机器学习的方法主要在模拟环境中进行研究,并偶尔应用于简单的现实世界环境作为“概念验证”系统。最近,基于LLMs的机器人导航方法引起了广泛关注。LLMs如GPT-3和BERT在大量文本数据上进行预训练,能够学习丰富的语言模式,只需少量示例即可执行各种语言任务。这些模型通过强大的语言和图像处理能力,能够有效地规划新任务并做出决策,甚至无需任何样本数据。LLMs还可以用于增强人机交互,例如LIM2N框架允许语言和手绘输入作为导航约束和控制目标。总之,LLMs在机器人导航中的应用是一个有前景的研究方向。然而,该领域仍面临许多挑战,如如何有效地将环境信息编码为文本、如何使机器人理解和处理复杂的环境信息、如何促进机器人做出合理决策、如何改善人机交互以及如何实现自主决策和推理。为了全面了解基于LLMs的导航技术并推动该领域的进一步研究,本文总结了基于LLMs的导航技术的最新进展,并讨论了未来的研究方向。与之前的综述相比,本文的不同之处在于:本研究重点探索基于LLMs的导航,这在推进该技术方面起着关键作用。本文主要考察LLMs在导航各个阶段的作用:感知、规划、控制、交互和协调。基于LLMs的导航方法根据其应用于的物理环境任务进行分类:室内、道路环境和越野环境。
    在这里插入图片描述
  2. 背景2.1 大语言模型大语言模型(LLMs)是一类基于Transformer架构的语言模型,以其庞大的参数量(通常达到数百亿)而闻名。这些模型通过在海量互联网数据上进行训练,具备了丰富的语言能力,主要体现在文本生成方面。典型的LLMs包括GPT-3、PaLM、LLaMA和GPT-4等。LLMs的一个显著特点是它们能够在上下文中进行学习,即仅凭少量示例就能生成连贯且适当的响应。与传统机器学习模型不同,LLMs依赖于深度双向表示、强大的上下文理解能力和高效处理复杂任务的能力。传统模型如长短期记忆网络(LSTM)通常依赖于特定的数据结构和算法来处理数据,而像GPT-4和Sora这样的LLMs则完全基于注意力机制。LLMs能够将传感器数据直接转换为可执行的交互代码,从而消除了感知信息与文本之间的差距。2.2 机器人导航移动机器人导航技术因其综合性和实用性而受到广泛关注。多年来,该领域的研究成果丰富,融合了从经典控制到机器学习的各种算法。它涉及一个多层次的架构,包括感知、规划和控制三个核心方面。解决这三个核心问题需要一系列关键技术,包括环境感知、自主定位和运动规划。移动机器人的环境感知技术利用机器人携带的传感器来感知周围环境,并处理获取的环境数据以获得特定信息(如特征和位置信息&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值