要将代码调用GPU,需要进行以下步骤:
- 导入
torch
库并检查是否有可用的GPU设备:
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- 将模型和数据移动到GPU设备上:
model = model.to(device)
train_x = train_x.to(device)
train_y = train_y.to(device)
- 在每个迭代步骤中,将输入数据和模型参数发送到GPU,并在GPU上进行计算:
for i in range(200):
out = model(train_x.to(device))
loss = loss_function(out, train_y.to(device))
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
在测试阶段,也需要将数据移动到GPU上进行推理:
model = model.eval()
dataset_x = dataset_x.to(device)
pred_test = model(dataset_x)
请注意,这些代码片段只是一个示例,你需要将其与你的代码相结合并根据需要进行修改。确保在每个需要进行计算的地方将数据移动到GPU上,并在需要时将其移回CPU进行后续处理。
另外,确保在计算时避免频繁的数据移动操作,尽量在GPU上进行更多的计算操作,以充分利用GPU的并行计算能力。