TSNE数据降维可视化

t-Distributed Stochastic Neighbor Embedding (t-SNE) 是一种用于数据降维和可视化的非线性技术。它被广泛用于高维数据的降维,以便将数据在二维或三维空间中进行可视化。t-SNE 将高维数据点映射到低维空间,保留数据点之间的局部关系,强调相似点之间的距离,而不强调不相似点之间的距离。

在 t-SNE 中,原始数据点的相似度通过高斯分布来衡量。t-SNE 试图在低维空间中保持相似数据点之间的相似度,同时追求不相似数据点之间的相似度足够小。这使得 t-SNE 特别适用于可视化高维数据中的聚类结构。

在 Python 中,scikit-learn 库提供了 t-SNE 的实现。以下是一个简单的使用示例:

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

# 假设 data 是你的高维数据,labels 是每个数据点对应的标签
data = ...
labels = ...

# 创建 t-SNE 模型
tsne = TSNE(n_components=2, random_state=42)

# 在降维空间中拟合数据
embedded_data = tsne.fit_transform(data)

# 绘制降维后的数据点
plt.scatter(embedded_data[:, 0], embedded_data[:, 1], c=labels, cmap='viridis')
plt.show()

在这个例子中,data 是高维数据,labels 是每个数据点的标签。通过 t-SNE 将数据降到二维空间,并使用散点图进行可视化。

需要注意的是,t-SNE 的计算成本较高,尤其是对于大规模的高维数据集。因此,在使用时需要谨慎选择参数,或者考虑使用其他降维技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值