快速跑 nerf instant-ngp 快速调试与配置,跑自己的数据

1.下载Anaconda3
2.打开Anaconda Prompt (Anaconda)
在这里插入图片描述
创建虚拟环境

conda create -n nerf-ngp python=3.8

切换到虚拟环境

conda activate nerf-ngp

安装相关依赖包

pip install commentjson imageio numpy opencv-python-headless pybind11 pyquaternion scipy tqdm

安装完毕后下载电脑显卡所对应的instant-ngp版本
下载地址:

https://github.com/NVlabs/instant-ngp

在这里插入图片描述
我的电脑上是3070ti所以选择了第一个,下载完成后解压
在这里插入图片描述
可以直接进行测试
打开exe文件,直接把data里nerf的fox拖进去就可以

2023-07-25 20-20-53

测试自己的数据:
自行选择设备录制一段场景的视频,要均匀扫描,手机不要移动太快,画面不要有模糊,比如围绕一个椅子匀速录制一圈。
我自己录制了一个办公桌面。
将录制的视频放在instant ngp的文件夹新建一个文件夹放进去
在这里插入图片描述
然后对视频进行处理,提取图片:
打开Anaconda Prompt,切换到新建的环境中

conda activate 环境名字

cd到ngp文件夹下:
在这里插入图片描述
执行命令:

python ..\scripts\colmap2nerf.py --video_in (desk.mp4---更换为你的视频名字) --video_fps 2 --run_colmap --overwrite

然后经过漫长的等待完成后,会出现分割好的image文件夹
然后继续执行命令:

python E:\nerf\Instant-NGP-for-RTX-3000-and-4000\scripts\colmap2nerf.py --colmap_matcher exhaustive --run_colmap --aabb_scale 16 --overwrite

colmap2nerf.py在你的ngp文件夹scripts下,自己定义路径即可!
经过漫长的等待,已经计算结束,最终文件夹会有这些东西。
在这里插入图片描述

可以进行测试:
回到ngp文件夹下,打开instant-ngp.exe,将desk文件夹整体拖进去!

2023-07-25 20-21-40

这样就可以看到自己数据的重建结果啦!

### Instant-NGPNeRF 的对比关系 #### 背景介绍 Neural Radiance Fields (NeRF) 是一种基于神经网络的方法,用于从多视角图像合成高质量的三维场景渲染效果[^1]。它通过优化一个连续的体积密度场和辐射场来实现逼真的视图合成。然而,NeRF 存在一些局限性,例如训练时间较长、内存消耗大以及对高频细节处理不够理想等问题。 Instant Neural Graphics Primitives (Instant-NGP) 则是一种改进版方法,旨在解决上述问题并提升效率。Instant-NGP 使用了一种混合表示法——结合了哈希编码(hash encoding)和多层感知机(MLP),从而显著提高了模型的学习速度和推理性能[^4]。 --- #### 主要差异分析 ##### 1. **计算效率** Instant-NGP 显著提升了训练和推断的速度。相比于传统的 NeRF 方法可能需要数小时甚至更长时间才能完成单个场景的训练Instant-NGP 可以在几秒钟到几分钟内达到相似的效果。这是由于其采用了高效的哈希表结构来进行空间划分,并减少了冗余参数的数量[^4]。 ##### 2. **存储需求** NeRF 需要较大的存储容量来保存复杂的隐式函数权重矩阵;而 Instant-NGP 借助稀疏网格技术降低了整体所需的显存占用率,在实际应用中更加友好[^5]。 ##### 3. **泛化能力** 尽管两者都能很好地重建已知数据集中的物体外观特性,但在面对未知环境或者更大规模的数据集合时,Instant-NGP 展现出更强的适应性和鲁棒性。这是因为它的设计允许快速调整配置以匹配不同的输入条件[^6]。 ##### 4. **频率响应行为** 正如提到过的那样,标准版本的 NeRF 对于距离较远却携带高频率变化的信息难以有效捕捉,容易造成所谓的“信号走样”。相比之下,Instant-NGP 更加注重平衡全局一致性和局部精细度之间的关系,因此能够更好地应对这种情况下的挑战[^7]。 --- #### 关系探讨 虽然二者都属于神经辐射领域范畴内的研究方向之一,但从本质上讲,Instant-NGP 应该被看作是对经典 NeRF 架构的一次重要升级迭代而非完全替代品。具体来说: - 它们共享相同的目标:即利用深度学习手段构建精确且视觉上令人满意的虚拟世界表现形式; - 同时也继承了一些共同的技术理念比如依赖 MLP 来预测颜色强度分布规律等等; - 不过为了克服原始方案存在的缺陷,后者引入了许多创新机制使得整个流程变得更加高效便捷同时也具备更高的灵活性去满足多样化的需求场景。 ```python import torch from instant_ngp import NGPModel # Example usage of Instant-NGP model initialization and training loop. model = NGPModel() for epoch in range(num_epochs): predictions, loss = model.train_step(input_data) optimizer.zero_grad() loss.backward() optimizer.step() ``` --- #### 总结 综上所述,Instant-NGP 提供了一个更快捷、资源利用率更高并且适用范围更为广泛的解决方案相对于传统意义上的 NeRF 技术而言。不过需要注意的是,任何新技术都有其特定的应用边界,在选用之前还需充分考虑项目实际情况做出合理判断。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值