自然语言处理学习笔记-lecture2-数学基础3-线性代数

本文介绍了线性代数中的向量概念,包括向量的定义、模长计算以及向量的主要运算。此外,还详细阐述了矩阵的基本性质,如矩阵的加法、数与矩阵的乘法、矩阵的乘法和转置,以及方阵的行列式、逆矩阵和初等变换。同时,提及了矩阵秩和特征值、特征向量的概念。
摘要由CSDN通过智能技术生成

线性代数

向量

n n n个有次序的数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an所组成的数组称为 n n n维向量。这 n n n个数称为该向量的 n n n个分量,第 i i i个数 a i a_i ai称为第 i i i个分量。向量通常表示为:
a = ( a 1 , a 2 , ⋯   , a n ) a = (a_1,a_2,\cdots,a_n) a=(a1,a2,,an)
向量的模也称为向量的大小,定义如下:
∣ ∣ a ∣ ∣ = a 1 2 + ⋯ + a n 2 ||a|| = \sqrt{a_1^2+\cdots+a_n^2} ∣∣a∣∣=a12++an2
给定两个 n n n维向量 a = ( a 1 , . . . , a n ) a = (a_1, ..., a_n) a=(a1,...,an) b = ( b 1 , . . . , b n ) b = (b_1, ..., b_n) b=(b1,...,bn),主要运算公式如下:

  • 加法: a + b = ( a 1 + b 1 , . . . , a n + b n ) a+b=(a_1+b_1,...,a_n+b_n) a+b=(a1+b1,...,an+bn)
  • 与数的乘法:设 λ \lambda λ是一个实数,则 λ a = ( λ a 1 , . . . , λ a n ) \lambda a = (\lambda a_1, ..., \lambda a_n) λa=(λa1,...,λan)
  • 内积: a ⋅ b = ∑ i = 1 N a i b i a\cdot b=\sum_{i = 1}^N a_ib_i ab=i=1Naibi
  • 元素级乘法: a ∘ b = ( a 1 b 1 , ⋯   , a n b n ) a\circ b=(a_1b_1,\cdots,a_nb_n) ab=(a1b1,,anbn)

矩阵

m × n m × n m×n个数 a i j ( i = 1 , . . . , m ; j = 1 , . . . , n ) a_{ij}(i = 1,..., m; j = 1,..., n) aij(i=1,...,m;j=1,...,n)排成的 m m m n n n列的数表称为 m × n m × n m×n 矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) A = \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \right) A= a11a21am1a12a22am2a1na2namn
m × n m × n m×n个数称为矩阵 A A A的元素。行数和列数都等于 n n n的矩阵称为 n n n阶方阵。只有一行的矩阵称为行向量:
A = ( a 1 , a 2 , ⋯   , a n ) A = (a_1,a_2,\cdots,a_n) A=(a1,a2,,an)
只有一列的矩阵称为列向量:
A = ( a 1 a 2 ⋮ a m ) A = \left( \begin{matrix} a_{1}\\ a_{2}\\ \vdots\\ a_{m}\\ \end{matrix} \right) A= a1a2am

矩阵的加法

设有两个 m × n m × n m×n矩阵 A = ( a i j ) A = (a_{ij}) A=(aij) B = ( b i j ) B = (b_{ij}) B=(bij),那么矩阵 A A A B B B的和记为:
A + B = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) A + B = \left( \begin{matrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{matrix} \right) A+B= a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn
需要注意,只有两个矩阵的行数和列数相同时,才可以进行加法运算。
A 、 B A、B AB C C C都是 m × n m × n m×n矩阵,则矩阵加法满足以下运算律:

  • 交换律: A + B = B + A A+B=B+A A+B=B+A
  • 结合律: ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

数与矩阵的乘法

实数 λ \lambda λ与矩阵 A A A的乘积记作 λ A \lambda A λA A λ A\lambda Aλ,计算如下:
λ A = A λ = ( λ a 11 λ a 12 ⋯ λ a 1 n λ a 21 λ a 22 ⋯ λ a 2 n ⋮ ⋮ ⋱ ⋮ λ a m 1 λ a m 2 ⋯ λ a m n ) \lambda A = A\lambda = \left( \begin{matrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \\ \end{matrix} \right) λA=Aλ= λa11λa21λam1λa12λa22λam2λa1nλa2nλamn
A A A B B B m × n m × n m×n矩阵, λ \lambda λ μ \mu μ为实数,则数与矩阵的乘法满足以下规律:

  • ( λ μ ) A = λ ( μ A ) (\lambda \mu)A = \lambda(\mu A) (λμ)A=λ(μA)
  • ( λ + μ ) A = λ A + μ A (\lambda + \mu)A = \lambda A + \mu A (λ+μ)A=λA+μA
  • λ ( A + B ) = λ A + λ B \lambda(A + B) = \lambda A + \lambda B λ(A+B)=λA+λB

矩阵与矩阵相乘

A A A是一个 m × s m × s m×s矩阵, B B B是一个 s × n s × n s×n矩阵,那么矩阵 A A A与矩阵 B B B的乘积是 一个 m × n m × n m×n矩阵 C = A B C = AB C=AB,其中:
c i j = ∑ k = 1 s a i k b k j c_{ij} = \sum_{k = 1}^s a_{ik}b_{kj} cij=k=1saikbkj
其中, a i k a_{ik} aik是矩阵 A A A的元素, b k j b_{kj} bkj是矩阵 B B B的元素, c i j c_{ij} cij是矩阵 C C C的元素。注意,当且仅当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘。

矩阵的转置

把矩阵 A A A的行换成同序数的列得到一个新矩阵,称为 A A A的转置矩阵,记作 A T A^T AT
矩阵的转置满足下述运算规律:

  • ( A T ) T = A (A^T)^T = A (AT)T=A
  • ( A + B ) T = A T + B T (A + B)^T = A^T + B^T (A+B)T=AT+BT
  • ( λ A ) T = λ A T (\lambda A)^T = \lambda A^T (λA)T=λAT
  • ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

方阵的行列式

n n n阶方阵 A A A的元素所构成的行列式,称为方阵 A A A的行列式,记作 ∣ A ∣ | A | A d e t A detA detA。给定一个两行两列的方阵,其行列式计算公式为:
A = ( a 11 a 12 a 21 a 22 )   ∣ A ∣ = d e t A = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 A = \left( \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right) \ |A| = detA = \left| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right| = a_{11}a_{22} - a_{12}a_{21} A=(a11a21a12a22) A=detA= a11a21a12a22 =a11a22a12a21

三行行列式

三行三列的方阵的行列式的计算更复杂一些,基本规律是先按照正向 (即从上方往右下方)对角线求和,再按照反向(即从上方往左下方) 对角线求和,最后计算两者之差。
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = + a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 \left| \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right| \\ \begin{aligned} = &+ a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ &-a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} \\ &+a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{aligned} a11a21a31a12a22a32a13a23a33 =+a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31

逆矩阵

对于 n n n阶矩阵 A A A,如果有一个 n n n阶矩阵 B B B
A B = B A = E AB = BA = E AB=BA=E
则说矩阵 A A A是可逆的,并把矩阵 B B B称为 A A A的逆矩阵。 A A A的逆矩阵通常记为 A − 1 A^{−1} A1。对于可逆矩阵,有以下性质:

  • 如果矩阵 A A A是可逆的,那么 A A A的逆矩阵是唯一的。
  • 如果矩阵 A A A可逆,则 ∣ A ∣ ≠ 0 |A| \neq 0 A=0
  • 如果 A B = E AB = E AB=E B A = E BA = E BA=E,则 B = A − 1 B = A^{−1} B=A1
  • 如果 A A A可逆,则 A − 1 A^{−1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{−1})^{−1} = A (A1)1=A
  • 如果 A A A B B B为同阶矩阵且均可逆,则 A B AB AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{−1} = B^{−1}A^{−1} (AB)1=B1A1

矩阵的初等变换

给定一个矩阵,以下三种变换称为初等行变换:

  • 对调第 i i i行和第 j j j行,记作 r i ↔ r j r_i \leftrightarrow r_j rirj
  • i i i行的所有元素乘以实数 k k k,记作 k r i kr_i kri
  • 把第 j j j行所有元素的 k k k倍加到第 i i i行对应的元素上,记作 r i + k r j r_i + kr_j ri+krj

同理,可以定义矩阵的初等列变换:

  • 对调第 i i i列和第 j j j列,记作 c i ↔ c j c_i \leftrightarrow c_j cicj
  • i i i列的所有元素乘以实数 k k k,记作 k c i kc_i kci
  • 把第 j j j列所有元素的 k k k倍加到第 i i i列对应的元素上,记作 c i + k c j c_i + kc_j ci+kcj

标准型与矩阵的秩

对于 m × n m × n m×n矩阵 A A A,总可以经过初等行变换和列变换将其化简为以下形式:
F = ( E r O O O ) F = \left( \begin{matrix} E_r & O \\ O & O \end{matrix} \right) F=(ErOOO)
其中, E r E_r Er表示维度为 r r r的单元方阵, O O O表示元素全为 0 0 0的矩阵。 F F F称为标准形, r r r称为矩阵的秩。

方阵的特征值和特征向量

A A A n n n阶矩阵,如果存在实数 λ \lambda λ n n n维非零列向量 x x x使得以下等式成立:
A x = λ x Ax = \lambda x Ax=λx
则称 λ \lambda λ是矩阵 A A A的特征值,非零向量 x x x A A A的对应于特征 λ \lambda λ的特征向量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值