InstantID: Zero-shot Identity-Preserving Generation in Seconds

  1. 问题引入
  • 目标是生成和reference图片相符合的图片,特别是人脸;
  • 现在基于微调模型的方法例如dreambooth,text inversion,lora等需要多张参考图片,且新的reference图片就需要重新进行微调;
  • 而ip-adapter这类的方法可以不用在inference的时候进行微调,但是依赖的是clip的image encoder,约束不强;
  • 本文的方法包含两部分条件,strong semantic and weak spatial conditions,也就是面部图片+landmark图片+text
  1. methods
    在这里插入图片描述
  • ID Embedding:使用人脸识别模型或者reid模型提取ID Embedding;
  • Image Adapter:和ip-adapter类似;
  • IdentityNet:controlnet,但是有一些变化,1)使用五个人脸关键点two for the eyes, one for the nose, and two for the mouth,2)cross attention只以id embedding作为条件,不包含text embedding;
  1. 实验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值