求解形如 dY=AY+B 的矩阵形式微分方程组步骤

课程设计编程衍生出来的问题,在网上没有搜到详细具体的步骤,故做此傻瓜教程作为补充。
设dY=AY+B为一标准的五阶常系数线性微分方程组。如下图所示:
标准方程形式
第一步:处理常数项
为计算方便,将等式右边两相合并。变形为
在这里插入图片描述
其中,矩阵M来自B,计算式为:
在这里插入图片描述
第二步:求解A阵的特征值λ和特征向量V
一般解微分方程组都是交给计算机的任务,这里直接使用matlab中的eig()函数求出,函数用法为:[λ,V]=eig(A);
此时,在matlab中,V为:由特征向量为每一列组成的五阶方阵,λ是:仅有以特征值为对角线元素构成的对角阵。
第三步:求解常系数C
方程组最终解的一般形式为下图所示(此时常数阵M还没有分离)
在这里插入图片描述
其中V1-5为A阵的特征向量,λ1-5

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值