空间坐标系(惯性坐标系、地球坐标系、WGS-84坐标系、站心坐标系)

空间坐标系(惯性坐标系、地球坐标系、WGS-84坐标系、站心坐标系)


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 旋转坐标系中的速度梯度张量 在处理流体动力学或固体力学问题时,特别是在涉及旋转系统的场景中,理解如何在旋转坐标系下计算速度梯度张量至关重要。为了实现这一点,首先需要考虑惯性坐标系与旋转坐标系之间的变换。 #### 惯性和旋转坐标系的关系 设有一个固定于空间惯性坐标系 \(Oxyz\) 和一个相对于该惯性坐标系以恒定角速度 \(\Omega\) 绕某轴线转动的旋转坐标系 \(O'x'y'z'\)[^1]。对于任意时刻 t,在这两个坐标系之间存在如下位置矢量关系: \[ \mathbf{r}(t)=\mathbf{T}\cdot\mathbf{r}'(t)+\mathbf{\omega}\times[\mathbf{\omega}\times\mathbf{r}'](t)\] 其中,\(T\) 是描述两坐标系间定向差异的时间依赖正交矩阵;而 \(\mathbf{\omega}=|\Omega|*\hat{n}\) 表示瞬时角速度矢量,这里 \(\hat{n}\) 是单位长度的方向向量[^2]。 #### 速度表达式的转换 当物体位于旋转坐标系内运动时,其绝对速度可以分解成相对速度加上牵连速度的形式: \[ \mathbf{v}_A(t)=\frac{d}{dt}\left[T\cdot\mathbf{r'}+\mathbf{\omega}\times(T\cdot\mathbf{r'})\right]= T\dot{\mathbf{r'}}+(T\cdot\mathbf{\omega})\times\mathbf{r'}+(\mathbf{\omega}\times T)\cdot\mathbf{r'}\] 注意到最后一项实际上就是科里奥利力的影响部分[^3]。 #### 速度梯度张量的构建 基于上述速度表达式,现在来探讨速度梯度张量的具体形式。考虑到速度场是一个矢量场函数,则速度梯度张量可通过对其各分量关于空间坐标的偏导数获得。具体来说, \[ L_{ij}=\partial_j v_i = (\nabla_v)_j e_i\] 这里的 \(e_i\) 表示基底向量,而在旋转框架下,由于额外引入了时间依赖性的转置操作以及交叉乘积效应,因此最终的速度梯度张量会包含更多复杂的成分[^5]。 特别地,在极坐标系(作为特殊类型的旋转坐标系)情况下,如果采用柱坐标系 (ρ,φ,z),那么速度梯度张量将涉及到对 ρ、φ 及 z 方向上相应速度分量的一阶偏微商,并且还需要计入因坐标系本身变动所带来的附加影响因子。 ```python import numpy as np def velocity_gradient_tensor(rho_dot, phi_dot, z_dot, omega): """ Calculate the velocity gradient tensor in cylindrical coordinates. Parameters: rho_dot : float or array_like Radial component of velocity. phi_dot : float or array_like Azimuthal angular speed. z_dot : float or array_like Vertical component of velocity. omega : tuple(float) Angular frequency components along each axis. Returns: ndarray Velocity gradient tensor represented by a matrix. """ # Initialize an empty 3x3 matrix to store results grad_V = np.zeros((3, 3)) # Fill out non-zero elements based on given formulas and input parameters grad_V[0][0] = d_rho_dot_drho() # ∂u_ρ/∂ρ grad_V[0][1] = d_rho_dot_dphi()/rho # ∂u_ρ/∂φ / ρ grad_V[0][2] = d_rho_dot_dz() # ∂u_ρ/∂z grad_V[1][0] = d_phi_dot_drho()*rho # ∂u_φ/∂ρ * ρ grad_V[1][1] = d_phi_dot_dphi() # ∂u_φ/∂φ grad_V[1][2] = d_phi_dot_dz() # ∂u_φ/∂z grad_V[2][0] = d_z_dot_drho() # ∂w/∂ρ grad_V[2][1] = d_z_dot_dphi() # ∂w/∂φ grad_V[2][2] = d_z_dot_dz() # ∂w/∂z return grad_V # Placeholder functions representing partial derivatives; these should be defined according to specific problem conditions def d_rho_dot_drho(): pass def d_rho_dot_dphi(): pass def d_rho_dot_dz(): pass def d_phi_dot_drho(): pass def d_phi_dot_dphi(): pass def d_phi_dot_dz(): pass def d_z_dot_drho(): pass def d_z_dot_dphi(): pass def d_z_dot_dz(): pass ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值