【三维重建系列】相机模型部分公式详解记录

相机模型P矩阵

公式:
P = K R [ I ∣ − C ∽ ] P = KR[I | -C^{\backsim}] P=KR[IC]
其中 C ∽ C^{\backsim} C表示平移矩阵 为齐次坐标 即世界坐标系原点到相机坐标系原点的距离 R R R同样表达的也是这个关系。

也写成这种形式:
P = M [ I ∣ M − 1 p 4 ] P = M[I | M^{-1}p_4] P=M[IM1p4]
其中 M = K R M = KR M=KR p 4 p_4 p4为P的第四列
如果 M M M矩阵不可逆时 为无穷远相机
原文对相机中心点坐标的描述:
在这里插入图片描述

相机模型P矩阵分解

行向量

P = [ p 11 p 12 p 13 p 14 p 21 p 22 p 23 p 24 p 31 p 32 p 33 p 34 p 41 p 42 p 43 p 44 ] = [ P 1 T P 2 T P 3 T ] P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \\ \end{bmatrix} = \begin{bmatrix}P^{1T} \\ P^{2T} \\ P^{3T} \\ \end{bmatrix} P=p11p21p31p41p12p22p32p42p13p23p33p43p14p24p34p44=P1TP2TP3T
P 3 T P^{3T} P3T为主平面 通过相机光心点并且平行于相机成像平面 P 2 T P^{2T} P2T通过相机光心点和成像平面的X轴 另一个同理
在这里插入图片描述

列向量

P = [ p 11 p 12 p 13 p 14 p 21 p 22 p 23 p 24 p 31 p 32 p 33 p 34 p 41 p 42 p 43 p 44 ] = [ P 1 P 2 P 3 P 4 ] P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \\ \end{bmatrix} = \begin{bmatrix}P_{1} & P_{2} & P_{3} & P_{4} \\ \end{bmatrix} P=p11p21p31p41p12p22p32p42p13p23p33p43p14p24p34p44=[P1P2P3P4]
P 1 P_{1} P1为世界坐标系X轴的消影点 x轴方向为 D = ( 1 , 0 , 0 , 0 ) T D = (1, 0, 0, 0)^T D=(1,0,0,0)T 所以 P 1 = P D P_{1} = PD P1=PD
同理 P 2 P_{2} P2为世界坐标系Y轴的消影点
P 3 P_{3} P3为世界坐标系Z轴的消影点
P 4 P_{4} P4为世界坐标系原点的图像点 P 4 = P ( 0 , 0 , 0 , 1 ) T P_{4} = P(0, 0, 0, 1)^T P4=P(0,0,0,1)T

消影点投影

设消影点的齐次坐标为 D = ( d T , 0 ) D = (d^T, 0) D=(dT,0) 则消影点映射到成像平面的公式为:
x = P D = [ M ∣ p 4 ] D x = PD = [M | p_4]D x=PD=[Mp4]D
但是此时D的最后一维为0 所以 p 4 p_4 p4相当于没有计算(很容易推)所以结果为:
x = M d x = Md x=Md
可见消影点投影只与M有关 与相机的位置无关

点的深度问题

x = ω ( x , y , 1 ) T = P X x = \omega(x, y, 1)^T = PX x=ω(x,y,1)T=PX
ω \omega ω其实为三维点原深度 也可以解释为从相机中心到三维空间点的射线与主轴方向的点积。 ( x , y , 1 ) (x, y, 1) (x,y,1)在第三维只有深度的体现 所以可以单独求出深度:
ω = P 3 T X = P 3 T ( X − C ) = m 3 T ( X ∽ − C ∽ ) \omega = P^{3T}X = P^{3T}(X - C) = m^{3T}(X^{\backsim} - C^{\backsim}) ω=P3TX=P3T(XC)=m3T(XC)
其中C为相机中心 PC = 0 所以随便加
另外从齐次到非齐次 丢掉了最后一个维度 所以P相应也舍去最后一个维度 又因为前面是 M [ I ∣ t ] M[I | t] M[It]最后一个维度t干掉后 只剩 M ∗ I M * I MI 所以等于M矩阵的第三行 即 m 3 T m^{3T} m3T

主点与主轴方向

主轴即通过相机光心 并且垂直于主平面的轴 主轴和成像平面的交点称为主点
已知主平面和主平面的法向量 讲主平面的法向量写成无穷远点的形式:
( p 31 , p 32 , p 33 , 0 ) (p_{31}, p_{32}, p_{33}, 0) (p31,p32,p33,0)
经过相机的任何一条射线 与像平面的交点可以表示为: P D PD PD 这个也等价于这个点的无穷远点在像平面的投影 P是3 * 4 D要求是 4 * 1嘛 最后一维就是0 已知三维点非齐次坐标 变成无穷远点的齐次坐标只需在最后一维添加0即可

所以主点即为主平面的法向量的无穷远点形式在像平面的投影
P m a i n = P P i n f i n e = [ M ∣ p 4 ] P i n f i n e P_{main} = PP_{infine} = [M | p_4]P_{infine} Pmain=PPinfine=[Mp4]Pinfine
然后干掉第四维 和上面的消影点投影那里一样 p 4 p_4 p4就不参与运算了:
P m a i n = M P i n f i n e = M m 3 T P_{main} = M P_{infine} = Mm^{3T} Pmain=MPinfine=Mm3T
等于M和他自己的第三行相乘 此处很容易推导顺出来 其中 m 3 T m^{3T} m3T被称为主轴方向

对极线区分有限相机和无穷远相机

有限相机的所有对极线都会相交于一点 这一点即一个相机的光心在另一个相机的像平面成像的位置。
对于无穷远相机的话 主平面即无穷远平面 所有的对极线也相交 但是交点在无穷远平面 即相交于无穷远点 所以对极线是平行的。

根据相机参数计算相机内参

在这里插入图片描述
原作者链接:传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铃灵狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值