11.6 高斯公式 *通量与散度

 

11.6 高斯公式 *通量与散度

第六节 高斯公式‘通量与散度

一、高斯公式

格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分之间的关系,而高斯(Gauss)公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系,这个关系可陈述如下:

定理1

设空间闭区域Ω是由分片光滑的闭曲面∑所围成,若函数 P(x,y,z)P(x,y,z)P(x,y,z)、Q(x,y,z)Q(x,y,z)Q(x,y,z) 与 R(x,y,z)R(x,y,z)R(x,y,z) 在Ω上具有一阶连续偏导数,则有:

这里∑是Ω的整个边界曲面的外侧,cos α、cos β与cos γ 是Ω在点(x,y,z)处的法向量的方向余弦。公式称为高斯公式。

证明

由公式(5-9)可知,公式的右端是相等的,因此这里只要证明公式(6-1)就可以了。

根据三重积分的计算法,有:

根据曲面积分的计算法,有:

因为∑₃上任意一块曲面在 xOyxOyxOy 面上的投影为零,所以直接根据对坐标的曲面积分的定义可知:

把以上三式相加,得:

类似地,如果穿过Ω内部且平行于 xxx 轴和 yyy 轴的直线与Ω的边界曲面∑的交点也都恰好是两个,那么可以分别得出:

把以上三式两端分别相加,即得高斯公式(6-1)。

在上述证明中,我们对闭区域Ω作了这样的限制,即穿过Ω内部且平行于坐标轴的直线与Ω的边界曲面∑的交点恰好是两点。如果Ω不满足这样的条件,可以引进几张辅助曲面把Ω分为有限个闭区域,使得每个闭区域满足这样的条件,并注意到沿辅助曲面相反两侧的两个曲面积分的绝对值相等而符号相反,相加时正好抵消,因此公式对于这样的闭区域仍然是正确的。

 

例1 利用高斯公式计算曲面积分

我们考虑如下曲面积分:

其中 ∑ 为柱面 x2+y2=1x^2 + y^2 = 1x2+y2=1 及平面 z=0z = 0z=0 和 z=3z = 3z=3 所围成的空间闭区域Ω的整个边界曲面的外侧。

利用高斯公式,我们把所给的曲面积分化为三重积分:

然而,我们在这里犯了一个错误,我们应该重新考虑一下这个问题。我们使用柱面坐标来计算:

将给定的曲面积分表示为:

我们采用柱面坐标 x=rcos⁡θx = r \cos \thetax=rcosθ, y=rsin⁡θy = r \sin \thetay=rsinθ,且 r=1r = 1r=1,则:

经过计算,我们得到:

例2 利用高斯公式计算曲面积分

我们考虑如下曲面积分:

其中 ∑ 为锥面 x2+y2=z2x^2 + y^2 = z^2x2+y2=z2,介于平面 z=0z = 0z=0 和 z=hz = hz=h 之间的部分的下侧,cos α、cos β 与 cos γ 是∑在点(x,y,z)处的法向量的方向余弦。

因为曲面∑不是封闭曲面,故不能直接利用高斯公式。若设∑₁为 z=hz = hz=h 上的曲面,则 ∑ 与 ∑₁ 一起构成一个封闭曲面,记它们围成的空间闭区域为Ω。利用高斯公式,便得:

我们计算:

其中 DDD 是 x2+y2≤h2x^2 + y^2 \le h^2x2+y2≤h2 的区域。注意到:

因此:

例3 证明公式

设函数 u(x,y,z)u(x,y,z)u(x,y,z) 和 v(x,y,z)v(x,y,z)v(x,y,z) 在闭区域Ω上具有一阶及二阶连续偏导数,证明:

其中 Σ 是闭区域 Ω 的整个边界曲面, ∇u⋅n\nabla u \cdot \mathbf{n}∇u⋅n 是函数 u(x,y,z)u(x,y,z)u(x,y,z) 沿 Σ 的外法线方向的方向导数,∇2\nabla^2∇2 称为拉普拉斯 (Laplace) 算子。这个公式叫做格林第一公式。

证明

因为方向导数:

其中 cos⁡α\cos \alphacosα、cos⁡β\cos \betacosβ 和 cos⁡γ\cos \gammacosγ 是 ∑ 在点 (x,y,z) 处的外法线向量的方向余弦。因此曲面积分:

利用高斯公式:

我们使用向量恒等式 ∇⋅(v∇u)=v∇2u+∇v⋅∇u\nabla \cdot (v \nabla u) = v \nabla^2 u + \nabla v \cdot \nabla u∇⋅(v∇u)=v∇2u+∇v⋅∇u,得到:

因此:

这证明了格林第一公式。

 

 

 

二、沿任意闭曲面的曲面积分为零的条件

现在提出与第三节第二目所讨论的问题相类似的问题,这就是:在怎样的条件下,曲面积分

与曲面∑无关而只取决于∑的边界曲线?这问题相当于在怎样的条件下,沿任意闭曲面的曲面积分为零?这个问题可以用高斯公式来解决。

空间二维单连通区域及一维单连通区域

先介绍空间二维单连通区域及一维单连通区域的概念。对于空间区域G,如果G内任一闭曲面所围成的区域全属于G,则称G是空间二维单连通区域;如果G内任一闭曲线总可以张成一片完全属于G的曲面,则称G为空间一维单连通区域。例如,球面所围成的区域既是空间二维单连通的,又是空间一维单连通的;环面所围成的区域是空间二维单连通的,但不是空间一维单连通的;两个同心球面之间的区域是空间一维单连通的,但不是空间二维单连通的。

对于沿任意闭曲面的曲面积分为零的条件,我们有以下结论:

定理2

设G是空间二维单连通区域,若 P(x,y,z)P(x,y,z)P(x,y,z)、Q(x,y,z)Q(x,y,z)Q(x,y,z) 与 R(x,y,z)R(x,y,z)R(x,y,z) 在G内具有一阶连续偏导数,则曲面积分

在G内与所取曲面∑无关而只取决于∑的边界曲线(或沿G内任一闭曲面的曲面积分为零)的充分必要条件是:

在G内恒成立。

证明

若等式在G内恒成立,则由高斯公式立即可看出沿G内的任意闭曲面的曲面积分为零,因此条件是充分的。反之,设沿G内的任一闭曲面的曲面积分为零,若等式在G内不恒成立,就是说在G内至少有一点 M0M_0M0​ 使得:

仿照第三节第二目中所用的方法,就可得出G内存在着闭曲面使得沿该闭曲面的曲面积分不等于零,这与假设相矛盾。因此条件是必要的。证毕。

 

 

三、通量与散度

设有向量场 其中函数 PPP、QQQ 与 RRR 均具有一阶连续偏导数,Σ\SigmaΣ 是场内的一片有向曲面,n\mathbf{n}n 是 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的单位法向量,则积分 ∬ΣA⋅n dS\iint_{\Sigma} \mathbf{A} \cdot \mathbf{n} \, dS∬Σ​A⋅ndS 称为向量场 A\mathbf{A}A 通过曲面 Σ\SigmaΣ 向着指定侧的通量(或流量)。由两类曲面积分的关系,通量又可表达为

例4:求向量场 A=yj+z2k\mathbf{A} = y \mathbf{j} + z^2 \mathbf{k}A=yj+z2k 穿过曲面 Σ\SigmaΣ 流向上侧的通量

其中 Σ\SigmaΣ 为柱面 y2+z2=1y^2 + z^2 = 1y2+z2=1(z≥0z \geq 0z≥0)被平面 x=0x = 0x=0 及 x=1x = 1x=1 截下的有限部分。

曲面 Σ\SigmaΣ 上侧的法向量可以由 f(x,y,z)=y2+z2f(x, y, z) = y^2 + z^2f(x,y,z)=y2+z2 的梯度可得出,即 在曲面 Σ\SigmaΣ 上,法向量 n\mathbf{n}n 的单位向量为

经过计算,我们得到:

所以,向量场 A\mathbf{A}A 穿过 Σ\SigmaΣ 流向上侧的通量为 π\piπ。

高斯公式的物理意义

设在闭区域 Ω\OmegaΩ 上有稳定流动的、不可压缩的流体(假定流体的密度为1)的速度场 其中函数 PPP、QQQ 与 RRR 均具有一阶连续偏导数,Σ\SigmaΣ 是闭区域 Ω\OmegaΩ 的边界曲面的外侧,n\mathbf{n}n 是曲面 Σ\SigmaΣ 在点 (x,y,z)(x, y, z)(x,y,z) 处的单位法向量。由第五节第一目知道,单位时间内流体经过曲面 Σ\SigmaΣ 流向指定侧的流体总质量就是

因此,高斯公式的右端可解释为速度场 v\mathbf{v}v 通过闭曲面 Σ\SigmaΣ 流向外侧的通量,即流体在单位时间内离开闭区域 Ω\OmegaΩ 的总质量。由于我们假定流体是不可压缩且流动是稳定的,因此在流体离开 Σ\SigmaΣ 的同时,Ω\OmegaΩ 内部必须有产生流体的“源头”产生出同样多的流体来进行补充。所以高斯公式的左端可解释为分布在 Ω\OmegaΩ 内的源头在单位时间内所产生的流体的总质量。

为简便起见,把高斯公式改写成

以闭区域 Ω\OmegaΩ 的体积 VVV 除上式两端,得

上式左端表示 Ω\OmegaΩ 内的源头在单位时间单位体积内所产生的流体质量的平均值。应用积分中值定理于上式左端,得

这里 (ξ,η,ζ)(\xi, \eta, \zeta)(ξ,η,ζ) 是 Ω\OmegaΩ 内的某个点。令 Ω\OmegaΩ 缩向一点 M(x,y,z)M(x, y, z)M(x,y,z),取上式的极限,得

上式左端称为速度场 v\mathbf{v}v 在点 MMM 的通量密度或散度,记作 divv(M)\text{div} \mathbf{v}(M)divv(M),即

divv(M)\text{div} \mathbf{v}(M)divv(M) 在这里可看做稳定流动的不可压缩流体在点 MMM 的源头强度。在 divv(M)>0\text{div} \mathbf{v}(M) > 0divv(M)>0 的点处,流体从该点向外发散,表示流体在该点处有正源;在 divv(M)<0\text{div} \mathbf{v}(M) < 0divv(M)<0 的点处,流体向该点汇聚,表示流体在该点处有吸收流体的负源(又称为汇或洞);在 divv(M)=0\text{div} \mathbf{v}(M) = 0divv(M)=0 的点处,表示流体在该点处无源。

对于一般的向量场 ​ 叫做向量场 A\mathbf{A}A 的散度,记作 divA\text{div} \mathbf{A}divA,即

利用向量微分算子 ∇\nabla∇,A\mathbf{A}A 的散度 divA\text{div} \mathbf{A}divA 也可表达为 ∇⋅A\nabla \cdot \mathbf{A}∇⋅A,即

如果向量场 A\mathbf{A}A 的散度 divA\text{div} \mathbf{A}divA 处处为零,那么称向量场 A\mathbf{A}A 为无源场。

例5:求例4中的向量场 A\mathbf{A}A 的散度

利用向量场的通量和散度,高斯公式可以写成下面的向量形式: ∭Ω∇⋅A dV=∬ΣA⋅n 

高斯公式表示:向量场 A\mathbf{A}A 通过闭曲面 Σ\SigmaΣ 流向外侧的通量等于向量场 A\mathbf{A}A 的散度在闭曲面 Σ\SigmaΣ 所围闭区域 Ω\OmegaΩ 上的积分。

 

 

 

 

 

 

 

 

 

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值