最优化学习 拟牛顿法(Quasi-Newton Method)

拟牛顿法是一种解决非线性优化问题的迭代方法,通过近似Hessian矩阵来加速梯度下降。本文介绍了DFP和BFGS两种经典的rank-2校正方法,以及SR-1的rank-1校正策略。这些算法利用矩阵更新来逼近Hessian,从而提高求解效率。Sherman-Morrison公式在Broyden类算法中起到关键作用,用于矩阵的快速修正。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴:最优化学习目录


拟牛顿法(Quasi-Newton Method)

Quasi−NewtenMethod  d k = − B − 1 ∇ f ( x k ) \text{Quasi−NewtenMethod } d^{k}=-B^{-1} \nabla f\left(x^{k}\right) Quasi−NewtenMethod dk=B1f(xk)
在这里插入图片描述

得到矩阵 B k + 1 B_{k+1} Bk+1

拟牛顿方程 : \text{拟牛顿方程 :} 拟牛顿方程 : ∇ f ( x k + 1 ) − ∇ f ( x k ) = B k + 1 ( x k + 1 − x k ) \nabla f\left(x^{k+1}\right)-\nabla f\left(x^{k}\right)=B_{k+1}\left(x^{k+1}-x^{k}\right) f(xk+1)f(xk)=Bk+1(xk+1xk) y k = ∇ f ( x k + 1 ) − ∇ f ( x n ) y_{k}=\nabla f\left(x^{k+1}\right)-\nabla f\left(x^{n}\right) yk=f(xk+1)f(xn) s k = x k + 1 − x k s_{k}=x^{k+1}-x^{k} sk=xk+1xk
这样我们就可以得到 y k = B k + 1 s k y_{k}=B_{k+1}s_{k} yk=Bk+1sk,记 H k + 1 = ( B k + 1 ) − 1 H_{k+1}=(B_{k+1})^{-1} Hk+1=(Bk+1)1
在这里插入图片描述

获取 B k + 1 B_{k+1} Bk+1 H k + 1 H_{k+1} Hk+1

  • 第一类方法:选择满足拟牛顿方程且与 B k B_{k} Bk近似的矩阵
  • 第二类方法:对 B k B_{k} Bk H k H_{k} Hk进行校正,如 B k + 1 = B k + Δ B B_{k+1} = B_{k} + \Delta B Bk+1=Bk+ΔB
    • rank-2 校正 Δ B \Delta B ΔB秩为2 DFP方法,BFGS方法
    • rank-1 校正 Δ B \Delta B ΔB秩为1 SR-1方法

在这里插入图片描述

DFP方法(Davidon-Fletche Powell)

可以看作是rank-2校正
( D F P ) H k + 1 = H k − H k y k y k T H k y k ⊤ H k y k + s k s k ⊤ y k ⊤ s k (D F P) H_{k+1}=H_{k}-\frac{H_{k} y_{k} y_{k}^{T}H_{k}}{y_{k}^{\top} H_{k} y_{k}}+\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}} (DFP)Hk+1=HkykHkykHkykykTHk+yksksksk
在这里插入图片描述

BFGS方法(Broyden-Fletcher-Goldfarb-Shannon)

可以看作是rank-2校正
( B F G S ) B k + 1 = B k − B k s k s k ⊤ B k s k ⊤ B k s k + y k y k ⊤ y k ⊤ s k (B F G S) B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{\top} B_{k}}{s_{k}^{\top} B_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}} (BFGS)Bk+1=BkskBkskBkskskBk+ykskykyk

在这里插入图片描述

Broyden类算法和Sherman-Morrison公式

Sherman-Morrison公式:
假设 A A A n n n阶可逆矩阵, u , v u,v u,v n n n维向量,且 ( A + u v T ) \left(A+u v^{T}\right) (A+uvT)也是可逆矩阵,则
( A + u v T ) − 1 = A − 1 − A − 1 u v T A − 1 1 + v T A − 1 u \left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u} (A+uvT)1=A11+vTA1uA1uvTA1

在这里插入图片描述

SR-1方法

( S R − 1 ) B k + 1 = B k + ( y k − B k k ) ( y k − B k s k ) T ( y h − B u s k ) ⊤ s k (SR-1)B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k_{k}}\right)\left(y_{k}-B_{k}s_{k}\right)^{T}}{\left(y_{h}-B_{u} s_{k}\right)^{\top} s_{k}} (SR1)Bk+1=Bk+(yhBusk)sk(ykBkk)(ykBksk)T
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值