数据归因模型,该如何搭建?

本文探讨了在数据分析中遇到的归因问题,特别是在试图降低人工客服工作量的情况下。核心难点在于领导期望的具体原因与数据分析提供的抽象结论之间的矛盾。文章提出了破局思路,包括将原因与业务动作对应、设定合理目标、打数据标签以及构建归因模型。通过模型构建,梳理用户生命周期逻辑,实现问题的分层归因。最后,强调在企业经营中,不必过于纠结原因,而是关注经营指标的改善和业务的持续进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要深度分析问题原因,不能只统计数字,流于表面!每次写原因分析类报告,都有领导这么咆哮道。而听到这个要求,很多新手同学又是眉头一皱眼睛一闭:妈耶,咋整啊。今天我们系统讲解下。

问题场景:

某硬件+服务的大企业,正在推微信服务小程序,目标是降低人工客服工作量。可全力推进一段时间后,人工客服未见减少。客户服务中心(一级部门,很有权势)领导大为不满,要求数据分析,为啥推广小程序没有减少人工客服量。

一、核心难点

归因问题首先难在:领导期望太细、太具体,而数据分析给不到。

数据分析产出的:30%的来电用户未绑定小程序,所以应该加强绑定。40%用户绑定了但是近1个月不登录,所以应该加强运营。

领导期望的:用户为什么不绑定?是不知道绑?不会绑?不想绑?为什么又不想绑?是我们没宣传?宣传了还是话术没说对?话说对了但是客人没认真听?

是滴,领导们期望的是这些具体的原因,这样才能针对性做改善。可这些具体的原因往往涉及用户心理、业务动作、用户与一线业务互动,根本没有数据记录,很难量化分析。可如果只给一个很粗的“加强绑定”的建议,肯定业务方不买单。谁来加强,加强哪里,加强到什么程度,一共十三步操作绑定排第几,这些具体问题都没有答案,自然会抗拒这种结果。

然而,即使是再做细致拆分,还有另一个核心难题:用户绑定了不登录,到底是因为用户太蠢,但是我们没做好?

成本分析模型搭建是一个系统化的过程,旨在通过对企业运营活动的成本结构和成本行为进行分析,来支持决策制定。以下是建立成本分析模型的基本步骤: 1. 确定成本分析目标:首先明确成本模型搭建的目的,比如是为了定价策略、成本控制、预算编制、业务绩效评估还是其他目的。 2. 收集数据:收集与成本相关的所有数据,包括直接成本、间接成本、固定成本和变动成本等。这些数据可以来自于企业的会计系统、财务报表、运营记录等。 3. 分析成本行为:将成本分解为固定成本和变动成本,理解成本与业务活动之间的关系。变动成本随业务量变化而变化,而固定成本则不随业务量改变。 4. 成本归因:将成本归因到相应的成本中心或产品线上。这需要考虑成本分配基准,如直接人工、机器工时或销售额等。 5. 构建成本模型:利用统计分析方法,如回归分析,来构建描述成本行为的数学模型模型可以是线性的、非线性的或更复杂的多因素模型。 6. 验证和校准模型:通过历史数据来测试模型的准确性和可靠性。根据测试结果调整模型参数,确保模型能够真实反映成本行为。 7. 应用模型进行分析:使用搭建好的成本分析模型来预测成本、制定预算、优化资源配置等,以便于决策支持。 8. 持续更新和维护:随着业务的发展和市场的变化,定期更新模型参数和结构,确保模型的适用性和精确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值