模型预测控制(Model Predictive Control, MPC)是一种先进的过程控制方法,它在每个采样时间点上,基于当前的系统状态和未来输入(控制变量)的预测,计算出一个有限时间范围内的最优控制序列。
假设系统模型
假设我们有一个离散时间线性系统,可以用以下状态空间方程描述:
x(k+1)=Ax(k)+Bu(k)
其中 x(k) 是系统状态,u(k) 是控制输入,A 和 B 是系统矩阵。
目标
控制目标是使系统状态 x(k) 尽可能接近期望状态 xref。
MPC算法步骤
- 预测:基于当前状态和控制输入预测未来状态。
- 优化:找到一个控制序列,以最小化成本函数(如状态误差的平方和)。
- 实施:只实施第一个控制输入,并在下一个时间步重复整个过程。
Python实现
我们将使用 numpy
进行数学运算,cvxpy
来解决优化问题(这里为了简化,我们使用二次规划)。
首先,安装必要的库(如果尚未安装):
pip install numpy cvxpy |
接下来是MPC的Python实现:
import numpy as np | |
import cvxpy as cp | |
# 系统参数 | |
A = np.array([[1, 1], [0, 1]]) | |
B = np.array([[0.5], [1]]) | |
x_ref = np.array([[2], [0]]) # 参考状态 | |
N = 10 # 预测和控制时域 | |
# 初始状态 | |
x = np.array([[0], [0]]) | |
# 预测和优化 | |
def mpc_step(x): | |
# 预测变量 | |
x_pred = cp.Variable((N+1, 2)) | |
u = cp.Variable((N, 1)) | |
# 预测模型 | |
constraints = [] | |
for t in range(N): | |
constraints += [x_pred[t+1] == A @ x_pred[t] + B @ u[t]] | |
constraints += [x_pred[0] == x] # 初始条件 | |
# 成本函数 | |
cost = 0 | |
for t in range(N): | |
cost += cp.norm(x_pred[t] - x_ref, p=2)**2 + cp.norm(u[t], p=2)**2 | |
# 求解问题 | |
prob = cp.Problem(cp.Minimize(cost), constraints) | |
prob.solve() | |
# 只应用第一个控制输入 | |
u_applied = u.value[0] | |
return u_applied, x_pred.value | |
# 运行MPC | |
for _ in range(20): | |
u_applied, x_pred = mpc_step(x) | |
print(f"Applied control: {u_applied}") | |
x = A @ x + B @ u_applied # 更新系统状态 |
注意事项
- 优化求解器:这里使用的是
cvxpy
的默认求解器,对于更复杂的问题可能需要更强大的求解器,如Gurobi
或MOSEK
。 - 系统稳定性和可行性:实际使用中需要确保MPC问题始终可行,且系统状态在控制下是稳定的。
- 实时性:MPC的实时计算需求可能很高,特别是当系统复杂或预测时域较长时。