python实现MPC算法

模型预测控制(Model Predictive Control, MPC)是一种先进的过程控制方法,它在每个采样时间点上,基于当前的系统状态和未来输入(控制变量)的预测,计算出一个有限时间范围内的最优控制序列。

假设系统模型

假设我们有一个离散时间线性系统,可以用以下状态空间方程描述:
x(k+1)=Ax(k)+Bu(k)
其中 x(k) 是系统状态,u(k) 是控制输入,A 和 B 是系统矩阵。

目标

控制目标是使系统状态 x(k) 尽可能接近期望状态 xref​。

MPC算法步骤

  1. 预测:基于当前状态和控制输入预测未来状态。
  2. 优化:找到一个控制序列,以最小化成本函数(如状态误差的平方和)。
  3. 实施:只实施第一个控制输入,并在下一个时间步重复整个过程。

Python实现

我们将使用 numpy 进行数学运算,cvxpy 来解决优化问题(这里为了简化,我们使用二次规划)。

首先,安装必要的库(如果尚未安装):

pip install numpy cvxpy

接下来是MPC的Python实现:

import numpy as np
import cvxpy as cp
# 系统参数
A = np.array([[1, 1], [0, 1]])
B = np.array([[0.5], [1]])
x_ref = np.array([[2], [0]]) # 参考状态
N = 10 # 预测和控制时域
# 初始状态
x = np.array([[0], [0]])
# 预测和优化
def mpc_step(x):
# 预测变量
x_pred = cp.Variable((N+1, 2))
u = cp.Variable((N, 1))
# 预测模型
constraints = []
for t in range(N):
constraints += [x_pred[t+1] == A @ x_pred[t] + B @ u[t]]
constraints += [x_pred[0] == x] # 初始条件
# 成本函数
cost = 0
for t in range(N):
cost += cp.norm(x_pred[t] - x_ref, p=2)**2 + cp.norm(u[t], p=2)**2
# 求解问题
prob = cp.Problem(cp.Minimize(cost), constraints)
prob.solve()
# 只应用第一个控制输入
u_applied = u.value[0]
return u_applied, x_pred.value
# 运行MPC
for _ in range(20):
u_applied, x_pred = mpc_step(x)
print(f"Applied control: {u_applied}")
x = A @ x + B @ u_applied # 更新系统状态

注意事项

  1. 优化求解器:这里使用的是 cvxpy 的默认求解器,对于更复杂的问题可能需要更强大的求解器,如 Gurobi 或 MOSEK
  2. 系统稳定性和可行性:实际使用中需要确保MPC问题始终可行,且系统状态在控制下是稳定的。
  3. 实时性:MPC的实时计算需求可能很高,特别是当系统复杂或预测时域较长时。
MPC是Model Predictive Control的缩写,是一种优化控制算法,用于路径跟踪和轨迹规划。在MPC框架中,我们使用数学形式来表示路径规划和优化问题,并使用MPC来发布控制指令。在使用MPC进行路径跟踪时,首先需要计算时间步长,并根据速度和角度计算出路径。然后,在每个时间步长内,根据当前位置和角度,使用相关MPC算法计算出速度和角速度的控制指令,并将其发布到控制器上。 另外,也有一些Python工具箱可以用于模型预测控制,比如do-mpc。do-mpc是一个开源工具箱,用于健壮的模型预测控制和移动视域估计。它提供了对非线性系统的有效公式化表示,并解决了控制和估计问题,包括处理不确定性和时间离散化的工具。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【python+ROS+路径规划】六、mpc轨迹规划和跟踪](https://blog.csdn.net/w_w_y/article/details/123004070)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [do-mpc:模型预测控制python工具箱](https://download.csdn.net/download/weixin_42097914/18297275)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值