信息论基础知识一(熵,互信息,交叉熵等几个基本概念)

信息来自对随机事件的选择,数据压缩的极限是min I(X;Y),数据传输的极限是max I(X;Y)。信源视作随机过程,用输入的随机变量的概率密度函数来表示,信道看作概率转移矩阵,考虑在噪声情况下p(y|x)的分布。我们通常考虑的是三个问题

  1. 信源的压缩极限:信源编码定理
  2. 在一定信道条件下,所能通过信道的最大信息极限:信道编码定理
  3. 容忍在一定信源压缩失真的条件下,所能得到的最小码率极限:率失真编码定理

首先介绍信息论的基本概念(针对的是离散随机变量)
#对比特的理解:二进制数字中的位,信息量的度量单位,为信息量的最小单位。比特,计算机专业术语,是信息量单位。二进制数的一位所包含的信息就是一比特,如二进制数0100就是4比特。
两个概念
1)计算机专业术语,是信息量单位,是由英文BIT音译而来。二进制数的一位所包含的信息就是一比特,如二进制数0100就是4比特。
2)二进制数字中的位,信息量的度量单位,为信息量的最小单位。数字化音响中用电脉冲表达音频信号,“1”代表有脉冲,“0”代表脉冲间隔。如果波形上每个点的信息用四位一组的代码表示,则称4比特,比特数越高,表达模拟信号就越精确,对音频信号还原能力越强。
位概念
二进制数系统中,每个0或1就是一个位(bit),位是数据存储的最小单位。其中8bit就称为一个字节(Byte)。计算机中的CPU位数指的是CPU一次能处理的最大位数。例如32位计算机的CPU一次最多能处理32位数据。

1:自信息
在这里插入图片描述
p(ai)是ai的概率密度函数,自信息越大,不确定性越大。当事件必然发生时不确定性为零,自信息为零。

2:熵:是信息不确定性的度量,也是描述随机变量平均所需的信息量。概率为1,是必然事件,一定会发生,不含信息量,所以熵为零。概率为零同理,当概率为0.5时,事件等可能发生,不确定性很大,所以熵达到二元分布的最大在这里插入图片描述在这里插入图片描述
在这里插入图片描述
熵也可以看作自信息的均值。在这里插入图片描述
3:联合熵 联合熵是联合不确定度的度量在这里插入图片描述与单个随机变量的熵定义类似,将联合熵定义为联合概率密度函数的对数均值

在这里插入图片描述
4:条件熵在这里插入图片描述类似的,条件熵看作条件概率密度函数的对数均值,当X,Y相互独立时,知道其中一个变量对另外一个变量的不确定度减少没有效果。即在这里插入图片描述
在这里插入图片描述
联合熵可以写成条件熵加上其中一个变量的熵,即联合不确定度等于X的不确定度加上在X知道的情况下Y的不确定度,可类似于联合概率密度函数来记忆。以上这个等式也叫做熵的链式法则在这里插入图片描述
加上条件后有上式成立,注意在这里插入图片描述,但是有在这里插入图片描述这个等式可以根据互信息得来
条件会减少随机变量的熵,即在这里插入图片描述但是在某个特定Y取值下,在这里插入图片描述也是有可能的,把Y看作某个具体的取值再去求条件熵其不确定性不一定减少。

5:互信息
在这里插入图片描述
即知道一个随机变量后对另一个随机变量不确定度的减少量。从信道的角度来看互信息,表示了一个信道输入于输出之间的依存关系,即信息的传输能力,也是后面的信道容量。收到Y后则尽可能多的知道关于X的信息,说明互信息大,信道的传输能力好,由此获得的信道容量最大,通过调节信道输入X来获得最大的信道容量。

  1. 对称性
    在这里插入图片描述
    从互信息的互即相互的意思,也可以理解是对称的
  2. 非负性
    在这里插入图片描述
    从条件减少熵可以知道被减数大于等于减数
  3. 极值性
    在这里插入图片描述
    也从条件减少熵和互信息的两种展开形式可以看出

6:鉴别信息(交叉熵,信息散度,K-L距离)
在这里插入图片描述
当真是分布是p时,假设分布是q的无效性的测度,这个符号在后面编码误差上下界上会有用
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
熵和互信息的相关关系

最大离散熵定理:离散随机变量X在等概率分布时,熵取得最大值在这里插入图片描述在这里插入图片描述是字母集的个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值