深度学习||搭建自己的network||单元测试输入输出

写在前面

1.深度学习往往需要自己定义网络框架,无论是复现还是找创新点。
2.网络结构的改进算不上创新,但也往往是基础中的基础。
3.这里写一下自己搭建的一些方式和习惯。

简单搭建

1.导入pytorch。

import torch
import torch.nn as nn
import torch.nn.functional as F

2.定义网络结构并引入测试。

class MyNetwork(nn.Module):
    def __init__(self, in_channel=1, num_class=2):
        super(MyNetwork, self).__init__()
        self.num_classes = num_class
        self.in_channel =in_channel

    def forward(self, x):
        return x
if __name__ == '__main__':
    device = torch.device('cpu')
    input=torch.randn(1, 1, 48, 48, 32).to(device)
    net=MyNetwork().to(device)
    out=net(input)
    print(out.shape)

3.写入卷积层、池化层。

class MyNetwork(nn.Module):
    def __init__(self, in_channel=1, num_class=2):
        super(MyNetwork, self).__init__()
        self.num_classes = num_class
        self.in_channel =in_channel

        self.conv = nn.Conv3d(1, 1, kernel_size=(3,3,3), padding=(1,1,1))
        self.pool = nn.MaxPool3d(kernel_size=2,stride=2)

    def forward(self, x):
        x = self.conv(x)
        x = self.pool(x)
       
        return x
if __name__ == '__main__':
    device = torch.device('cpu')
    input=torch.randn(1, 1, 48, 48, 32).to(device)
    net=MyNetwork().to(device)
    out=net(input)
    print(out.shape)

4.封装卷积。

class ContinusParalleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ContinusParalleConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.Conv_forward = nn.Sequential(
                nn.Conv3d(self.in_channels, self.out_channels, kernel_size=(3,3,3), padding=(1,1,1)),
                nn.BatchNorm3d(out_channels),
                nn.ReLU(),
                nn.Conv3d(self.out_channels, self.out_channels, kernel_size=(3,3,3), padding=(1,1,1)),
                nn.BatchNorm3d(self.out_channels),
                nn.ReLU()
        )

    def forward(self, x):
        x = self.Conv_forward(x)
        return x

class MyNetwork(nn.Module):
    def __init__(self, in_channel=1, num_class=2):
        super(MyNetwork, self).__init__()
        self.num_classes = num_class
        self.in_channel =in_channel

        self.conv = ContinusParalleConv(1,1)
        self.pool = nn.MaxPool3d(kernel_size=2,stride=2)
    def forward(self, x):
        x = self.conv(x)
        x = self.pool(x)
        return x
if __name__ == '__main__':
    device = torch.device('cpu')
    input=torch.randn(1, 1, 48, 48, 32).to(device)
    net=MyNetwork().to(device)
    out=net(input)
    print(out.shape)
       

基本上就是一个基础的network搭建了。

补充
还有一些操作,比如

导入已有的预训练模型

from torchvision.models import resnet18
class Resnet18(nn.Module):
    def __init__(self, num_classes=2, pretrained=False):
        super(Resnet18, self).__init__()
        model = resnet18(pretrained)
        self.model = model
    def forward(self, x):
        x = self.model(x)
        return x
if __name__ == '__main__':
    device = torch.device('cpu')
    input=torch.randn(1, 3, 48, 48).to(device)
    net=Resnet18().to(device)
    out=net(input)
    print(out.shape)

查看网络参数量和Flops

if __name__ == '__main__':
    device = torch.device('cpu')
    input=torch.randn(1, 3, 48, 48).to(device)
    net=Resnet18().to(device)
    out=net(input)
    print(out.shape)

    from thop import profile
    macs, params = profile(net, inputs=(input,))
    print(macs / 1000000000)
    print(params / 1000000)

通道叠加

y_1_0 = torch.cat([self.upsample_1_2(y_2_1), t_1_2], dim=1)

激活函数

final = F.softmax(self.final_super_x_x(x_x_x), dim=1)

有时候模型不拟合的原因就是忘记加归一化。

各种各样的注意力
无论通道还是空间注意力,transform还是混合注意力。先把注意力封装了,然后导入进来就行。
3D插入注意力可以看我之前写的这篇,通过reshape实现。

https://blog.csdn.net/weixin_45638136/article/details/126607637?spm=1001.2014.3001.5501

封装
很多东西可以封装起来,比如通道数

class UNet3Stage(nn.Module):
    def __init__(self, in_channel=1, num_class=2, base_channels=32):
        super(UNet3Stage, self).__init__()
        self.num_classes = num_class
        self.in_channel =in_channel

        """
        encoding
        """
        self.stage_0 = ContinusParalleConv_2d(self.in_channel, base_channels)
        self.stage_1 = SingleConv_2d(base_channels, base_channels*2)
        self.stage_2 = SingleConv(base_channels*2, base_channels*4)
        self.stage_3 = SingleConv(base_channels*4, base_channels*8)

这样后期调参数量就很方便了,学会封装。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值