gazebo 仿真 kinect 获取点云数据

项目地址:https://github.com/yym68686/ros-slam

简介

使用 urdf 文件构建仿真机器人,在 gazebo 搭建仿真环境,导入人造卫星的 stl 文件,利用仿真 kinect 深度相机获取人造卫星的点云数据并在 RVIZ 中可视化,将 PointCloud2 数据类型转化为 pcd 文件。

使用指南

进入目录

mkdir catkin_ws
cd catkin_ws
mkdir src
cd src

下载软件包

git clone https://github.com/yym68686/ros-slam.git

回到根目录编译

cd ~/catkin_ws
catkin_make

让 ROS 找到软件包

source ~/catkin_ws/devel/setup.bash

启动 ROS 内核

roscore

结合 URDF 打开 gazebo 仿真环境

roslaunch ros-slam env.launch

打开机器人深度相机 kinect 等传感器并在 rviz 可视化

roslaunch ros-slam sensor.launch

打开机器人运动控制

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

按照提示使用键盘控制小车方向。运动控制需要下载依赖

sudo apt-get install -y ros-noetic-teleop-twist-keyboard

订阅 kinect 点云话题转化为点云 pcd 文件

rosrun ros-slam pcd_write

上条命令在哪个目录执行,就在哪个目录生成 pcd 文件,查看 pcd 点云文件

pcl_viewer file.pcd

软件包搭建过程

测试环境

从头开始,不管前面的项目,创建文件夹

mkdir catkin_ws
cd catkin_ws
mkdir src
cd src

创建软件包

catkin_create_pkg ros-slam rospy roscpp std_msgs urdf xacro gazebo_ros gazebo_ros_control gazebo_plugins

进入 ros-slam/src 文件夹创建文件 hello.cpp

cd ros-slam/src
touch hello.cpp

写入

#include <ros/ros.h>

int main(int argc, char const *argv[])
{
    printf("Hello World!\n");
    return 0;
}

在 CMakeLists.txt 添加

echo "add_executable(hello src/hello.cpp)" >> CMakeLists.txt

编译

cd ~/catkin_ws
catkin_make

让 ROS 找到软件包

source ~/catkin_ws/devel/setup.bash

运行节点

rosrun ros-slam hello

运行成功。

运行仿真环境

sudo apt-get install -y ros-noetic-teleop-twist-keyboard
cd ~
git clone -b kinect https://github.com/yym68686/ROS-Lab.git
cd ~/catkin_ws/src
roslaunch ros-slam env.launch
roslaunch ros-slam sensor.launch
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
rostopic pub -r 10 /cmd_vel geometry_msgs/Twist "linear:
  x: 1.0
  y: 0.0
  z: 0.0
angular:
  x: 0.0
  y: 0.0
  z: 1.0"

CMakeLists.txt 增加

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

# add_executable (pcd_write src/test_pcl.cpp)
add_executable (pcd_write src/pcl_write.cpp)
target_link_libraries(pcd_write
  ${catkin_LIBRARIES}
)
target_link_libraries (pcd_write ${PCL_LIBRARIES})

编译

catkin_make

查看当前是否有 camera/depth/ros-slams 话题

rostopic list

点云数据格式:http://docs.ros.org/en/api/sensor_msgs/html/msg/ros-slamCloud2.html

### 回答1: 在gazebo仿真中,我们可以通过以下步骤使用D435相机获取某个点的三维坐标: 1. 首先,确保已经在gazebo仿真环境中正确配置了D435相机模型,并将其添加到场景中。 2. 在仿真环境中创建一个可编程的控制器或插件,以便能够通过代码访问和控制相机。通常,这可以通过插件编程语言(例如C++)或ROS中的节点来实现。 3. 在控制器或插件中,运用D435相机对应的API函数,以启动相机并开始获取图像数据。这需要设置相机的一些参数,如分辨率、帧率等。 4. 接下来,我们要识别以目标点为中心的像素坐标。可以使用OpenCV或其他图像处理库来分析相机图像数据,并通过阈值或特征点检测等算法定位目标点的像素坐标。 5. 一旦得到目标点的像素坐标,我们需要将其转换为相机坐标系下的坐标。可以通过相机的内参矩阵和畸变系数,使用OpenCV提供的函数将像素坐标转换为相机坐标。 6. 最后,将相机坐标转换为世界坐标系下的坐标。在gazebo仿真中,通过查找相机模型在场景中的位置和方向,可以使用相应的变换矩阵将相机坐标转换为世界坐标。 综上所述,通过配置相机模型并编写相应的控制器或插件,在gazebo仿真中使用D435相机获取某个点的三维坐标可以通过图像处理和变换矩阵的方法来实现。 ### 回答2: 在gazebo仿真中,可以通过使用d435相机获取某个点的三维坐标。首先,确保已经在gazebo环境中加载并启动了d435相机模型。 接下来,需要编写一个用于获取三维坐标的程序或脚本。以下是一个示例Python脚本,用于在gazebo仿真获取d435相机中某个点的三维坐标: ```python import rospy from sensor_msgs.msg import PointCloud2 from sensor_msgs import point_cloud2 as pc2 def callback(data): # 将PointCLoud2消息转换为点云数据 pc_data = pc2.read_points(data, skip_nans=True) # 定义待获取坐标的像素点位置 pixel_x = 320 pixel_y = 240 # 通过像素点位置获取相机坐标系下的三维点坐标 for i, p in enumerate(pc_data): if i == pixel_y * width + pixel_x: x, y, z = p rospy.loginfo("3D Point Coordinates: x = %f, y = %f, z = %f", x, y, z) break def listener(): rospy.init_node('point_cloud_listener', anonymous=True) rospy.Subscriber('/d435/points', PointCloud2, callback) rospy.spin() if __name__ == '__main__': listener() ``` 在该示例中,首先通过定义待获取坐标的像素点位置,这里我们假设要获取第240行,第320列的像素点的坐标。 接下来,在回调函数中,将PointCLoud2消息转换为点云数据。然后,通过迭代点云数据,找到指定像素点位置对应的三维点坐标。 最后,在获取到三维点坐标后,可以通过rospy.loginfo函数打印出来。 请注意,该示例中的topic名称`/d435/points`是指d435相机发布的点云数据的topic名称,在实际使用中需要根据实际情况进行修改。 通过运行上述代码,就可以在gazebo仿真获取d435相机中指定像素点位置的三维坐标信息。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值