【论文笔记】3D LiDAR Mapping in Dynamic Environments Using a 4D Implicit Neural Representation

原文链接:https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/zhong2024cvpr.pdf

1. 引言

为实现户外场景的精确3D重建,需要考虑运动物体的动态。过去的SLAM方法可使用多种策略处理动态:(1)使用预处理步骤从输入过滤动态,这要求对场景的语义解释;(2)在地图表达中建模占用,可通过回顾性地移除空空间的测量隐式移除动态;(3)将其纳入状态估计,对来自动态和静态部分的测量进行建模。本文方法使用(3),在地图表达中直接建模动态,得到时空占用地图表达。

隐式神经表达启发了本文对动态环境的4D重建。本文将时间相关的截断有符号距离函数(TSDF)编码为隐式神经场景表达。本文以连续激光雷达点云为输入,在每帧生成TSDF,用于提取网孔。背景的TSDF在整个序列中不变,容易从4D信号中提取出来,作为静态地图,可用于从原始点云中分割动态物体。与显式的体素表达相比,神经隐式表达可保留丰富的地图细节。

3. 本文的方法

本文的输入为点云序列 S 1 : N = ( S 1 , ⋯   , S N ) \mathcal S_{1:N}=(\mathcal S_1,\cdots,\mathcal S_N) S1:N=(S1,,SN)及其相应的全局姿态 T t ∈ R 4 × 4 , t ∈ [ 1 , N ] T_t\in\mathbb R^{4\times4},t\in[1,N] TtR4×4,t[1,N]。点云 S t = { s t 1 , ⋯   , s t M t } \mathcal S_t=\{s^1_t,\cdots,s^{M_t}_t\} St={ st1,,stMt}中的点 s t i ∈ R 3 s_t^i\in\mathbb R^3 stiR3。本文的目标是重建4D TSDF并保留静态3D地图。

3.1 地图表达

时间表达:TSDF为点 p ∈ R 3 p\in\mathbb R^3 pR3的标量函数,其值为点到最近表面的距离(若距离大于阈值,则将距离设置为阈值)。当点位于空空间或测量表面前时,符号为正;当点位于占用空间或测量表面后时,符号为负。

在动态场景中,点的有符号距离值可能会随时间变化。但对于静态物体的点而言,其有符号距离值不变。本文的思想是使用 K K K个全局共享的基函数 ϕ k : R → R \phi_k:\mathbb R\rightarrow \mathbb R ϕk:RR表达各点的时变SDF。则 t t t时刻,点 p p p的TSDF为
F ( p , t ) = ∑ k = 1 K w p k ϕ k ( t ) F(p,t)=\sum_{k=1}^Kw_p^k\phi_k(t) F(p,t)=k=1Kwpkϕk(t)

其中 w p k ∈ R w_p^k\in\mathbb R wpkR为可优化的位置相关系数。本文将基函数初始化为离散余弦变换(DCT)基函数:
ϕ k ( t ) = cos ⁡ ( π 2 N ( 2 t + 1 ) ( k − 1 ) ) \phi_k(t)=\cos(\frac\pi{2N}(2t+1)(k-1)) ϕk(t)=cos(2Nπ(2t+1)(k1))

ϕ 1 ( t ) = 1 \phi_1(t)=1 ϕ1(t)=1为时不变的。优化过程中,本文将 ϕ 1 ( t ) \phi_1(t) ϕ1(t)固定(将 w p 1 w_p^1 wp1视为点 p p p的静态SDF值),通过反向传播优化其余基函数。则 F ( p , t ) F(p,t) F(p,t)可分解为动态基函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值