一、A-SCN
原文链接:Attentional ShapeContextNet for Point Cloud Recognition | IEEE Conference Publication | IEEE Xplore
这篇文章提出了一个新的网络结构SCN(本文不过多关注):
引入注意力后即A-SCN。下图为A-SCN块结构(图中标注的第一个好像应为
):
上图中与
相加后,有一个transformation环节将
转换为
形状。
二、Point Attention
原文链接:https://arxiv.org/pdf/1909.12663.pdf
本文提出了新的网络结构LAE-Conv,然后将其输出特征输入到下列结构:
其中均由MLP得到;
表示矩阵乘法。
最后,其中
为缩放参数。
将上述注意力机制嵌入网络中,得到本文的Point Attention网络如下:
三、CAA
原文链接:https://arxiv.org/pdf/1911.12885.pdf
同样也是先提出一种网络结构,再将特征输入下图所示的CAA模块:
该图大致分为三行,第一行包含CCC块和CAE块:
1.CCC块:Compact Channel-wise Comparator block
设输入特征为,在通道向量
上使用共享权重的MLP,得到更少的点数
,
。
使用两个MLP 和
分别处理
,即
和
。令
为query矩阵,
为key矩阵,然后计算相似度矩阵
,其第
行第
列元素值表示
第
个通道和第
个通道的相似度。
2.CAE块:Channel Affinity Estimator block
首先选取每一列最大的相似度,然后扩维至与
相同的大小。将其减去原始的
后,有较高相似度的通道会有较低的Affinity。
图中第二行使用另一个MLP 得到
;
为value矩阵。
图中第三行使用残差连接,并学习一个权重来使学习变得容易。最终的输出为
四、Offset Attention
原文链接:https://arxiv.org/pdf/2012.09688.pdf
同样先提出PCT(点云Transformer)结构,这里仅关注其中的注意力部分。
Offset Attention图示:
图中两个开关均往上时为自注意力(SA);均往下时为offset attention;LBR表示线性层,BN和ReLU。
若输入为,则对于SA有
其中,
;即
,
。
然后由图中的SS操作归一化,得到:
(1)
最后,且
(2)
Offset attention所作的修改在(1)和(2)式:
五、Point Transformer
原文链接:https://arxiv.org/pdf/2012.09164.pdf


使用减法关系,并对注意力向量和变换特征
添加位置编码
:
其中子集是
的局部邻域(如
近邻);
表示按元素乘法;映射函数
是带ReLU的双层MLP;
是归一化函数如softmax;
是逐点的特征变换,如线性层或MLP。
实际上这里的
分别产生
矩阵。
位置编码:,这里
是点
的坐标。函数
是带ReLU的双层MLP,与其他子网络一同训练。