三相异步电动机的自耦变压器降压起动建模仿真

1. 引言

2. 单相自耦变压器和三相感应电动机数学模型

3. 系统仿真模型

4. 仿真实例

5. 总结

1. 引言 

       三相异步电动机结构简单﹑价格低廉﹑运行可靠﹑维护方便,在工农业生产中得到了广泛应用。为使电动机能够转动起来,并很快达到工作转速,要求电动机具有足够大的电磁转矩,同时希望起动电流不要太大。起动电流大会引起电网电压下降过多,影响接在同一电网上的其它电机或电气设备的正常运行。起动转矩小使得电动机重载起动时起动困难,严重时则不能起动。

       由于三相感应电动机直接起动时,起动电流通常为额定电流的4-7倍,会对电网造成较大冲击。而使用自耦变压器降压启动,可以有效降低启动电流,减少对电网的冲击。这种起动方法是利用自耦变压器降低加到电动机定子绕组的电压以减小起动电流,待转速基本稳定时再把电动机直接接到电网上。自耦变压器降压起动不受电动机绕组接线方式限制,与星-三角降压启动相比,自耦变压器降压启动的启动转矩更大,能够更好地满足电动机在启动过程中对转矩的需求。为了满足不同负载的要求,自耦变压器的二次绕组一般有三个抽头,分别为电源电压的40%﹑60%﹑80%(或55%﹑64%﹑73%),供选择使用。该方法适合于容量较大的低压电动机,有手动和自动控制线路。其优点是电压抽头可供不同负载起动时选择,可根据允许的启动电流和所需的起动转矩选用不同的变压器电压抽头,实现灵活的起动电压调节。缺点是起动设备体积大,需要一套复杂的开关电器,价格较高,还需维护检修;自耦变压器不适用于频繁起动的场合。

       三相异步电动机的起动应考虑其结构特点(是笼型还是绕线型)﹑电网的容量﹑负载的大小和性质以及机械转动惯量的高低﹑起动是否频繁等,这些是选择电动机起动方法时应该考虑的主要因素。三相异步电动机的降压起动方法很多,自耦变压器的降压起动三相异步电动机是其中之一,但是,详细全面介绍自耦变压器起动三相异步电动机建模仿真分析的文章却比较少见,本文根据自耦变压器和三相异步电动机的数学模型,建立起自耦变压器的降压起动三相异步电动机系统的仿真模型,并通过实例进行仿真,仿真结果是正确可信的。

2. 单相自耦变压器和三相感应电动机数学模型

2.1 单相自耦变压器的数学模型   

       自耦变压器的原边和副边之间存在直接的电气连接,所以功率是通过感应和传导从原边转移到副边的,这与双绕组变压器不同,后者的原边和副边是电气隔离的。从原理上看,单相自耦变压器可以看成由双绕组变压器演变而来。 

        为简单起见,建立单相自耦变压器的数学模型时作如下假定:自耦变压器的绕组绕在完全相同的铁心柱(例如环形铁心柱)上;认为整个绕组导体的材料和截面积是相同的,绕组电阻为常数,即不考虑电阻的集肤效应和温度效应。在此基础上,如果有必要,可在此数学模型的基础上加以修正,把主磁路的饱和效应和集肤效应考虑进去,建立变压器的非线性数学模型。

单相自耦变压器瞬态行为的数学模型可以写成:

\dot{x}=Ax+Bv     (1)

式中, 

\dot{x}=\begin{bmatrix} \frac{di_1}{dt} \\ \frac{di_2}{dt} \\ \frac{di_3}{dt} \end{bmatrix}G=\begin{bmatrix} L_1 + L_{m1} + L_L & L_L - M & -(L_{m1} + M) \\ L_L - M & L_2 + L_{m2} + L_L & L_{m2} + M \\ -(L_{m1} + M) & L_{m2} + M & L_{m1} + L_{m2} + 2M \end{bmatrix}x=[i_{1};1_{2};i_{3}];A=-G^{^{-1}}\begin{bmatrix} R_1 + R_L & 0 & 0 \\ R_L & R_2 + R_L & 0 \\ 0 & 0 & R_C \end{bmatrix} ;B=G^{-1}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}

式(1)中,串联绕组电阻(R1)和公共绕组电阻(R2)分别是(N1-N2)匝和N2匝的电阻。同样,串联绕组的漏感(L1)和公共绕组的漏感(L2)分别是(N1-N2)匝和N2匝的漏感。因此,随着公共绕组匝数(N2)的增加,串联绕组电阻R1和电感L1减少,而公共绕组电阻R2和电感L2增加。Lm1和Lm2分别是(N1-N2)匝和N2匝的磁化电感。这种磁化电感取决于降压自耦变压器的滑环位置。M为串联绕组于公共绕组之间的互感。R_{c}为模拟铁心损耗的电阻。

2.2 三相异步电动机的数学模型

三相感应电机在任意速dq正交坐标系中的混合磁链模型为: 

\begin{aligned} & \frac{dF_{ds}}{dt}=\omega_{b}[u_{ds}-\frac\omega{\omega_b}F_{qs}+\frac{R_{s}}{x_{ls}}(\frac{x_{ml}}{x_{lr}}F_{dr}+(\frac{x_{ml}}{x_{ls}}-1)F_{ds})]\\ & \frac{dF_{qs}}{dt}=\omega_{b}[u_{qs}-\frac\omega{\omega_b}F_{ds}+\frac{R_{s}}{x_{ls}}(\frac{x_{ml}}{x_{lr}}F_{qr}+(\frac{x_{ml}}{x_{ls}}-1)F_{qs})]\\ & \frac{dF_{dr}}{dt}=\omega_{b}[-\frac{\omega-\omega_r}{\omega_b}F_{qr}+\frac{R_r}{x_{lr}}(\frac{x_{ml}}{x_{l5}}F_{d5}+(\frac{x_{ml}}{x_{lr}}-1)F_{dr})]\\ & \frac{dF_{qr}}{dt}=\omega_{b}[\frac{\omega-\omega_r}{\omega_b}F_{dr}+\frac{R_r}{x_{lr}}(\frac{x_{ml}}{x_{ls}}F_{qs}+(\frac{x_{ml}}{x_{ls}}-1)F_{qr})]\\ & \frac{d\omega_r}{dt}=\frac{n_p}J(T_{e}-T_{L})\end{aligned}     (2)

式中,

T_e=1.5n_p\frac1{\omega_b}(F_{qs}i_{ds}-F_{ds}i_{qr})

i_{ds}=\frac{1}{x_{ls}}(F_{ds}-F_{md})\\i_{qs}=\frac{1}{x_{ls}}(F_{qs}-\psi_{mq})\\i_{dr}=\frac{1}{x_{lr}}(F_{dr}-F_{md})\\i_{qr}=\frac{1}{x_{lr}}(F_{qr}-F_{mq}) 

F_{md}=x_{ml}(\frac{F_{ds}}{x_{ls}}+\frac{F_{dr}}{x_{lr}})\\F_{mq}=x_{ml}(\frac{F_{qs}}{x_{ls}}+\frac{F_{qr}}{x_{lr}})

x_{ml}=1/(\frac1{x_m}+\frac1{x_{ls}}+\frac1{x_{lr}})

3.系统仿真模型

     首先,建立自耦变压器的仿真模型。根据方程(1)用matlab/sinmulink的Level-2 MATLAB S-Function模块编写S函数程序,建立起单相自耦变压器的仿真模型,然后将三个一样的单相自耦变压器连接成三相组式自耦变压器,如图1所示。

图1. 三相(组式)自耦变压器simulink仿真模型

       其次,建立三相异步电动机的仿真模型。根据方程(2)用matlab/sinmulink的功能模块建立起三相异步电动机的仿真模型,如图2所示。

 

图2. 三相异步电动机simulink仿真模型 

       最后,用上面搭建的自耦变压器仿真模型和异步电动机仿真模型,根据自耦变压器起动三相异步电动机的基本要求,建立起自耦变压器降压起动三相异步电动机系统的仿真模型,如图3所示。

图3. 自耦变压器降压起动三相异步电动机仿真模型 

4.仿真实例 

       仿真用自耦变压器额定功率为5 KVA、230 V、50 Hz、串联绕组和公共绕组总匝数N1=280匝,总电阻R=2.32欧,铁心电阻Rc=578欧,每匝磁化电感Lm0=9.7847e-6亨,总磁化电感L=0.7671亨,每匝漏感取2%L。

       三相异步电动机的 额定功率为2.2Kw,额定电压为380v,额定电流I_{N}=5.0A,极对数p=2,额定频率为50Hz,额定转速n_{N}=1420rpm,转动惯量J=0.02Kg.m^{2}定子绕组为\Delta接法。每相定子电阻R_{1}=2.437\Omega,每相转子电阻R_{2}=2.157\Omega,每相定子漏感L_{ls}=7.87mH,每相转子子漏感L_{lr}=9.529mH,激磁电感L_{m}=270.9mH

         应用图3所示的仿真模型,将上面的有关数据填入仿真模型的设置中,然后进行仿真计算。三相异步电动机带额定通风机负载。自耦变压器原边接在220v三相对称理想电源上。将自耦变压器的副边绕组匝数N_{2}设置为三档,t=0时,N_{2}=240,t=0.4s时,N_{2}=255,t=0.8s时N_{2}=265,t=1.4s时将自耦变压器从电网上切除,同时让三相异步电动机接在具有额定电压的电网上。仿真结果如图4所示。为便于比较,还给出了三相异步电动机直接起动时的仿真结果,如图4所示。

(a)三相异步电动机的电流波形

(b) 转速和电磁转矩曲线

(c) 定子绕组端电压波形

图3. 自耦变压器起动三相异步电动机的瞬态特性 

图4. 三相异步电动机直接起动时的电流,转速和电磁转矩曲线 

       从图3的仿真结果来看,起动过程中,定子绕组最大冲击电流出现在起动过程的末端,从电网切除自耦变压器时刻,最大冲击电流幅值约为20A,最大冲击直接40N.m;起动过程的前段由于电压较低,定子绕组电流较小,不到两倍额定电流,整个启动过程中,电流不超过三倍额定电流。从图4来看,异步电动机直接起动时的定子电流最大幅值约为50A,最大冲击转矩幅值约为90N.m,大大高于自耦变压器降压起动时的数值。从以上仿真结果可知,自耦变压器降压起动三相异步电动机可以有效限制起动电流,但起动时间大大增加了。

5.总结 

       本文根据单相自耦变压器和三相异步电动机的数学模型建立了自耦变压器降压起动三相异步电动机系统的仿真模型,通过实例仿真验证了仿真模型的正确性和实用性,为自耦变压器降压起动三相异步电动机的建模仿真提供了方法,对自耦变压器起动三相异步电动机系统的设计有实际指导意义和帮助作用。所建立的仿真模型还可以对更复杂的情况进行仿真,例如三相自耦变压器副边中性点接RC阻尼器限制副边绕组抽头切换时引起的过高的冲击电压的情况。

### 三相桥式全控整流电路 Simulink 建模仿真 #### 1. 整流电路概述 三相桥式全控整流电路是一种常见的电力电子变换装置,在自动控制系统、测量系统和发电机励磁系统等领域有着广泛应用[^1]。这种电路能够将交流电源转换为可调的直流电压输出,适用于多种工业应用场景。 #### 2. 使用Simulink搭建模型的原因 由于涉及复杂的交直流信号处理及多个电气组件(如晶闸管),传统手工计算方式难以精确描述其动态特性。而通过MATLAB下的图形化建模仿真平台——Simulink,则能有效简化设计流程并提高效率。用户可以在界面上拖拽模块来构建所需拓扑结构,并轻松调整各项参数设置以观察不同工况下系统的响应情况[^2]。 #### 3. 构建基本框架 为了创建一个完整的三相桥式全控整流电路模型,需按照实际物理连接关系依次加入各个功能单元: - **输入端**:引入标准正弦波形作为电网侧供给; - **变压器降压环节**(视具体需求决定是否添加) - **六脉冲触发器组**:用于生成六个独立但相互间存在固定相位差的角度脉冲序列给定至各支路上对应的SCR门极; - **负载RLC网络** 以下是部分核心元件的选择建议: | 组件名称 | 描述 | | --- | --- | | AC Voltage Source | 提供稳定的三相交流输入源 | | Three-phase Thyristor Bridge Converter Block | 实现双向导通特性的理想开关行为模拟 | | Scope & Powergui Elements | 方便实时监测内部节点量变化趋势 | ```matlab % 创建新的空白项目文件 new_system('ThreePhaseFullControlledRectifier'); % 添加必要的库链接路径 add_block('powerlib/three_phase_power_sources/AC Voltage Source',... 'ThreePhaseFullControlledRectifier/VoltageSource'); add_block('powerlib/conversion/thyristors_and_diodes/Thyristor',... {'ThreePhaseFullControlledRectifier/ThyristorA';... 'ThreePhaseFullControlledRectifier/ThyristorB'; ... 'ThreePhaseFullControlledRectifier/ThyristorC'}); add_block('simulink/Sinks/Scope',... 'ThreePhaseFullControlledRectifier/OutputWaveformMonitor'); ``` #### 4. 参数配置说明 针对上述提到的关键部件,还需合理设定它们的具体属性值才能确保仿真的准确性。例如对于可控硅而言,除了指定额定电流外还应考虑开通时间延迟等因素的影响;而对于滤波电容则要注意容量大小能否满足抑制纹波的要求等。 #### 5. 控制策略实施 最后一步就是编写合适的控制器算法程序片段嵌入到整个体系之中,从而达到预期的功能目标。这里可以选择经典的PID调节机制或是更先进的模糊逻辑控制等方式来进行优化改进。 ```matlab function alpha = calculateFiringAngle(t,Vrms,Iload) persistent prev_error integral_sum; if isempty(prev_error),prev_error=0;end if isempty(integral_sum),integral_sum=0;end error = Vref - mean(Iload); proportional_term = error; integral_sum = integral_sum + error*dt; derivative_term = (error-prev_error)/dt; alpha = kp*proportional_term + ki*integral_sum + kd*derivative_term; prev_error = error; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值