1.变换矩阵的意义
1.将3D物体转化到2D平面
2.为各个空间的运用做准备
2.MVP矩阵代表什么
MVP矩阵分别是模型(Model)、观察(View)、投影(Projecttion)三个矩阵。我们顶点坐标起始于局部空间(Local Space),在这里它称为局部坐标(Local Coordinate),它在之后会变为事件坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束。
2.1 M矩阵
模型空间->世界空间
以自身为中心的空间坐标系
以世界为中心的空间坐标系
从模型空间变换到世界空间
1.第一步进行了缩放
2.第二步进行了旋转
3.第三步进行了平移
对应的依次进行矩阵变换得出变换矩阵
M = [ 1 0 0 t x 0 1 0 t y 0 0 1 t z 0 0 0 1 ] [ cos θ 0 sin θ 0 0 1 0 0 − sin θ 0 cos θ 0 0 0 0 1 ] [ s x 0 0 0 0 s y 0 0 0 0 s z 0 0 0 0 1 ] M= \begin{bmatrix} 1 & 0 & 0 & t_x\\ 0 & 1 & 0& t_y\\ 0 & 0 & 1 & t_z\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0\\ 0 & 1 & 0 & 0\\ -\sin\theta & 0 & \cos\theta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 & 0\\ 0 & s_y & 0 & 0\\ 0 & 0 & s_z & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} M=
100001000010txtytz1