目录
文章目录
人工智能发展历程
学科起源(1956年)
美国达特茅斯学院会议首次提出 “人工智能” 概念,标志学科诞生,核心人物包括 John McCarthy、Marvin Minsky 等。
知识工程时代(1977年)
Edward Feigenbaum 提出 “知识工程”,核心是通过专家系统将知识存储于知识库,实现自动化推理,推动 AI 从实验室走向企业应用。
专家系统奠定了知识表示与推理的基础,但是专家系统存在如下的问题:
- 脆弱性(领域外性能下降)
- 专业知识过于狭窄,在解决本专业问题时有高超的水平
- 一旦稍微偏离原领域,性能急剧下降
- 解决方法:增加知识的宽度,使系统具有常识和一般知识
- 知识获取困难
- 知识获取作为建造知识系统的瓶颈,是一个长期存在的关键研究难点
新智能观与学派形成(1991 年)
行为主义
继符号主义和联接主义两大智能观,MIT 的 Brooks提出了无需表示和理性的智能
以复杂的现实世界为背景,先使机器具有初级智能,再在实践中逐渐增长智能
靠“感知-行动”的机器虫,没有推理、规划等高级思维能力,但感知、运动等应付环境的能力大大超过了现有的机器人
逻辑学派
提供了严格的知识表示和有效的推理机制
代表人物 Nilson:主张在统一的逻辑框架内进行人工智能研究,认为各种类型的逻辑是人工智能的基础。
代表人物McCarthy:主张以非单调逻辑为中心的常识推理作为人工智能的基础
分布式人工智能学派
Hewitt主张用“分布式”的方法,在开放系统中研究人工智能问题,其认为智能系统是一个开放系统
智能系统的行为不仅体现在单个个体的活动,而应当体现在多个体之间既相互依存、又相互冲突的活动中最终作出的决策是通过在多个个体之间进行协调的分布式方法
分布式人工智能学派对多智能体研究的出现和发展起到了积极的推动作用。
[!NOTE]
Hewitt. Open Information-Systems Semantics for Distributed Artificial Intelligence.Special Issue on Foundations of AI. Artificial Intelligence, 47(1-3):79-106, 1991.
多智能体领域的形成
发展脉络
1980s后期
从分布式人工智能领域开始区分协作型和自私型智能体,研究建立在博弈论和经济学概念之上的自私智能体交互。
1990s初期
智能体的出现促进了软件构件理念的更新:Agent-Oriented Programming(AOP)
智能体通信语言的标准化:KQML/KIF-> FIPA
1990s后期
多智能体协作协商模型、联盟形成和体系结构的研究
进一步拓宽多智能体系统的现实应用领域:机器人世界杯(RoboCup足球和RoboCup救援)
国际会议
- International Workshop on Agent Theories, Architectures, and languages(ATAL, 1994-)
- International Conference on Multi-Agent Systems(ICMAS, 1995-)
- International Conference on Autonomous Agents(AA, 1999-)
- 专刊:Communications of the ACM“Intelligent Agents”1994
- 国际智能体及多智能体系统协会(IFAAMAS, 2002)
多智能体领域的发展
2000-2010
- 电子商务应用:交易智能体在谈判和竞拍等领域的发展、拍卖和博弈均衡策略的求解
- 与认知和社会科学领域交叉的多智能体模拟技术,以及类人自主智能体、分布式传感网络、自动驾驶车辆等
2010-2020
- 基于多智能体的大规模棋牌类游戏应用
- 多智能体学习(特别强化学习)
- 算法博弈论(算法机制设计、计算社会选择理论等)
- 分布式问题求解/分布式规划
2020-至今
MARL在多领域应用落地;智能体结合大规模预训练模型,大语言模型智能体、具身智能成为新的研究热点
多智能体领域的国际和国际会议
国际期刊
- Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS, 1998-)
- Journal of Artificial Intelligence Research (Open access, 1993-)
- Artificial Intelligence Journal (Elsevier, 1970-)
- ACM Computing Surveys (1969-)
国际会议
- International Joint Conference on Autonomous Agents and Multi-Agent Systems(AAMAS, 2002-)
- The AAAI Conference on Artificial Intelligence(AAAI, 1980-)
- International Joint Conference on Artificial Intelligence(IJCAI, 1969-)
国内学会
- 2014年,成立中国计算机学会人工智能与模式识别专委会“多智能体系统学组”
- 2022年12月,成立中国人工智能学会心智计算专委会
国内会议
- 全国Agent理论与应用学术会议(2006-2012,两年一次)
- 2013年起,并入“中国计算机学会人工智能会议”(CCF-AI,两年一次)
- 2014年起,举办“中国智能体及多智能体系统”研讨会、“多智能体系统前沿论坛”(2014-2024,每年一次
什么是智能体?
特性 | 含义 |
---|---|
Situated | 在动态 / 不确定环境中感知并行动 |
Flexible | 反应性(对环境变化做出响应) 主动性(提前行动) |
Autonomous | 对自身行动进行控制 |
Goal - oriented | 有目的性 |
Persistent | 持续运行的过程 |
Social | 与其他智能体 / 人进行交互 |
Learning | 具有适应性 |
Mobile | 能够自行移动 |
Personality | 具有个性、情绪状态 |
PRS:一个BDI智能体的实现
BDI (Belief-Desire-Intention)
智能体系统结构如下:
多智能体领域研究热点与挑战
- 超大规模分布式人工智能系统
- 超大规模系统应用面临可能出现的状态和采取的决策随系统规模呈指数级增长
- 多智能体系统的鲁棒性和安全性
- 以深度学习和深度神经网络为基础的算法鲁棒性问题
- 多智能体决策的可解释性
- 基于深度模型的多智能体学习算法带来的“黑箱”问题
- 传统方法与深度模型的结合
- –深度神经网络与传统符号计算、传统控制理论的结合
基于LLM的智能体研究与应用
大语言模型智能体(LLM Agent)结构如下:
总结图片
参考资料
UCAS研究生课程《多智能体系统》