文献阅读:通过 NeuronChat 从单细胞转录组推断神经元-神经元通信

文献介绍

alt

「文献题目」 Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat
「研究团队」 聂青(加利福尼亚大学欧文分校)
「发表时间」 2023-02-28
「发表期刊」 Nature Communications
「影响因子」 16.6
「DOI」 10.1038/s41467-023-36800-w

摘要

神经通信网络构成了大脑功能的基础。这些通信网络是通过发射配体(如神经递质)来实现的,它们激活受体复合物以促进通信。因此,神经通信基本上取决于转录组。在这里,作者开发了 NeuronChat,一种用于推断、可视化和分析预定义细胞群体之间的神经特异性通信网络的方法和软件包,使用单细胞表达数据。作者整合了人类和小鼠的神经信号传导的手工策划的分子相互作用数据库,并在几个已发表的数据集上对 NeuronChat 进行基准测试,以验证其预测神经连接能力。然后,作者将 NeuronChat 应用于三个不同的神经组织数据集,以说明其在识别神经内部通信网络、揭示不同生物学背景下保守或特定于上下文的相互作用以及预测自闭症谱系障碍患者大脑中通信模式变化方面的功能。最后,作者证明 NeuronChat 可以利用空间转录组学数据来推断和可视化神经特异性细胞-细胞通信。

研究结果

1. NeuronChat 概述

首先,作者为小鼠和人类创建了一个神经特异性的细胞间分子相互作用数据库,名为 NeuronChatDB(Fig. 1a)。每一种相互作用都包含一个 配体(ligand) 和一个同源 靶标(target) 以及与其 合成(synthesis)囊泡运输(vesicular transport) 相关的蛋白质编码基因。ligands 包括小分子神经递质(neurotransmitters)、神经肽(neuropeptides)、间隙连接蛋白(gap junction proteins)、气体递质(gasotransmitters)和突触粘附分子(synaptic adhesion molecules),而 targets 通常但不限于受体。例如,神经递质的靶蛋白也可以是摄取转运蛋白或失活酶;间隙连接蛋白的靶蛋白是其他兼容的间隙连接蛋白。对于非肽类神经递质,条目中包含相应的合成酶和/或囊泡转运蛋白;对于包含多个不同亚基的异聚受体,相应的亚基被整理成具有相同配体的不同条目。在总共 373 个配体-靶点相互作用对条目中,分别有 221、73、39、16、24 个与小分子神经递质、神经肽、间隙连接蛋白、气体递质和突触粘附分子相关的条目。

Fig.1 NeuronChat 概述
Fig.1 NeuronChat 概述

a. NeuronChat database 概述。NeuronChat database 包括 chemical synapse(化学突触)、electrical synapse(电突触)、synaptic adhesion(突触粘附)所需的 ligand-target pairs(配体-目标对)(左图)。NeuronChat database 共收集了人类和小鼠的 373 对 ligand-target,根据配体的类型分为 5 个类别(中图)。相互作用对列表包括配体、靶标和对它们有贡献的基因(右图)。值得注意的是,参与配体的基因根据其不同的生物学功能,如合成(synthesis)或囊泡运输(vesicular transport),被分为不同的组(用颜色表示)。
b. 说明 NeuronChat 计算模型的示意图。通讯强度表征了发送细胞群中配体发射所需基因的协调表达,以及接收细胞群中目标基因的表达。通信链路的统计显着性由排列检验确定(* 和 ns 分别代表显着和不显着)。仅重要链路保留在输出通信强度矩阵中,而不重要链路的值设置为零。详细信息请参见方法。
c. NeuronChat 的一些功能:细胞间通信网络的可视化与分析,不同生物背景间进行系统的比较,空间转录组学的多层可视化。

其次,作者基于预定义细胞群相互作用分子的坐标表达,构建了一个计算模型,将表达数据与细胞间通讯概率联系起来(Fig. 1b)。NeuronChat 的输入数据是一个 标准化的 cell-by-gene 计数矩阵,带有细胞的 group 注释。对于 NeuronChatDB 中的每个细胞间相互作用对,首先按 cell group 对所有相关基因的表达水平进行平均,基于此估计每个 cell group 的 ligand 和 target 的丰度。对于非肽神经递质,首先将有助于 ligand 发射的基因分类为不同的生物功能组(例如,合成(synthesis)和囊泡运输(vesicular transport)),然后通过在不同组之间应用 AND 逻辑(即几何平均值)来建模丰度。基因,同时在同一组内的冗余基因之间应用 OR 逻辑(即算术平均值);对于其他配体和所有靶标,丰度计算为平均表达。然后,将两组之间的细胞间通讯强度设置为一个 cell group 的 ligand 丰度与另一 cell group 的 target 丰度的乘积。重要的通信可以通过排列测试来确定,其中随机排列 cell group 标签并重新计算通信强度。因此,对于每次相互作用,可以构建细胞间通信网络,即由相互作用的 cell groups 之间的重要链接组成的加权有向图。通过总结与四种不同聚合方法进行单独交互的所有通信网络,可以进一步获得聚合通信网络。

第三,NeuronChat 提供了不同的方法来可视化和分析推断的细胞间通信网络(Fig. 1c)。圆形图、弦图和热图可用于可视化细胞组之间的通信强度。NeuronChat 还可以对推断的通信网络进行定量分析,以识别信号模式并对交互进行分类。对于来自不同生物背景的多个数据集,NeuronChat 可以进行系统比较并识别保守的和特定背景的 ligand-target 相互作用对。对于空间转录组数据,NeuronChat 可以将细胞空间定位纳入细胞间通讯的推理中,并提供空间细胞间通讯的多层可视化。

2. NeuronChat 基准测试

为了研究 NeuronChat 预测细胞间通信的能力,作者首先将预测的通信网络与实验确定的基准进行比较。研究了两个案例:(1)小鼠大脑中初级视觉皮层(VISp)的投射网络,以及(2)小鼠大脑中前外侧运动皮层(ALM)的投射网络。VISp 和 ALM 的兴奋性神经元与其皮质目标区域的连接是使用单突触逆行标记识别的,其中病毒示踪剂被注射到目标区域并通过逆行轴突运输向突触前神经元移动,而不会进一步扩散到间接接触的细胞,从而允许直接神经连接的识别。通过使用细胞类型注释对逆行标记神经元进行分组,获得了粗粒度投射网络,该网络由从 VISp 和 ALM 中的兴奋性神经元类型到其皮质目标区域的定向链接组成(Fig. 2a for VISp and Fig. 2f for ALM) ,然后用于后续基准测试。VIsp、ALM 及其目标区域的 scRNA-seq 数据收集自两篇已发表的论文。使用的数据包括 VIsp 的 7 个亚类(L2/3 IT、L4、L5 IT、L5 PT、L6 CT、L6 IT 和 L6b)的 6,785 个谷氨酸能细胞,以及来自三个皮质目标区域(ACA, RSP and contralateral VISp); ALM 的 5 个亚类(L2/3 IT、L5 IT、L5 PT、L6 CT 和 L6 IT)的 3,883 个谷氨酸能细胞,以及来自六个皮质目标区域(SSs, SSp, RSP, MOp, contralateral ALM and contralateral ORB)。

Fig.2 对两个小鼠皮质区域 VISp 和 ALM 的投射网络进行 NeuronChat 的基准测试
Fig.2 对两个小鼠皮质区域 VISp 和 ALM 的投射网络进行 NeuronChat 的基准测试

a. 通过逆行标记进行识别的,从 7 种 VISp 细胞类型到其皮层靶区的投射 ground truth。
b. NeuronChat 预测的 VISp 细胞间通信网络。假阳性连接代表了那些被 NeuronChat 预测但没有被逆行标记识别的连接。假阴性连接代表那些被逆行标记识别但被 NeuronChat 预测遗漏的连接。在此图中,二值化的阈值是 0.028(按最大值归一化)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ 生信宝库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值