图搜索算法的基本流程如下:
- 创建一个容器,一般称为openlist,用来存储将要访问的节点
- 将起点加入容器
- 开始循环:
- 弹出:从容器中取出一个节点
- 扩展:获取该节点周围的节点,将这些节点放入容器
Dijkstra算法是从一个顶点到其余各顶点的最短路径算法。
Dijkstra算法的代价函数f(n)定义为:f(n)=g(n),其中g(n)表示从起点到当前点的移动代价。
计算左上角起点到右下角终点的最短路径,箭头上的数值表示两个节点间的距离。
首先扩展第一个节点,计算其余节点与第一个节点的距离,用深蓝色标出已经扩展的节点,未扩展的节点仍用绿色标出,其中圆中的数值表示该节点的代价函数,字母则表示该节点没有直接到达此时已扩展节点的路径。从未扩展的节点(绿色节点)中选择代价函数最小的节点进行拓展,并更新其余节点的代价函数,如下图:
重复进行上面的步骤,直到所有节点都已扩展。
最后标出起点到终点的最短路径
将Dijkstra算法应用到二维地图路径规划中,如下图,可以看到Dijkstra算法能够得到最优路径
参考:路径规划 | 图搜索算法:DFS、BFS、GBFS、Dijkstra、A*_白鸟无言的博客-CSDN博客_图搜索算法