关于我跑图神经网络

一、 环境配置

cuda11.3

torch                          1.12.1+cu113
torch-cluster                  1.6.0+pt112cu113
torch-geometric                2.4.0
torch-scatter                  2.0.9
torch-sparse                   0.6.15+pt112cu113
torch-spline-conv              1.2.1+pt112cu113 

tqdm                           4.62.3

ogb                            1.3.6

二、loader类型

2.1 GraphSAINTRandomWalkSampler

GraphSAINTRandomWalkSampler是一种用于图数据的采样器,用于生成随机游走序列。它是基于GraphSAINT算法的一部分,用于有效地训练大规模图神经网络。

GraphSAINTRandomWalkSampler的工作原理如下:

  1. 首先,它从图中的每个节点开始,进行多次随机游走。随机游走是指从当前节点出发,按照一定的策略选择下一个节点,直到达到预定的步数或达到终止条件。
  2. 在每次随机游走中,采样器会根据指定的邻居采样策略,选择当前节点的邻居节点作为下一个节点。这样可以有效地探索图中的不同路径和邻居节点。
  3. 采样器会记录每次随机游走的路径,形成一个随机游走序列。这些序列可以用于训练图神经网络,以捕捉节点之间的关系和图的结构。

GraphSAINTRandomWalkSampler的优点包括:

  • 高效的采样策略:采样器使用了一种基于邻居节点的采样策略,可以有效地探索图中的不同路径和邻居节点。
  • 可扩展性:采样器可以处理大规模图数据,并且可以在分布式环境中进行并行化处理。
  • 适用于图神经网络训练:采样器生成的随机游走序列可以用于训练图神经网络,以学习节点之间的关系和图的结构。

总之,GraphSAINTRandomWalkSampler是一种用于图数据的高效采样器,可以生成随机游走序列,用于训练图神经网络。它在大规模图数据和分布式环境中具有良好的可扩展性和适用性。

2.2 NeighborSampler

NeighborSampler是一种用于图数据的邻居采样器,用于生成邻居子图。它是基于图神经网络中的采样方法,用于有效地训练大规模图数据。

NeighborSampler的工作原理如下:

  1. 首先,它从图中的每个节点开始,选择一定数量的邻居节点作为邻居子图的中心节点。
  2. 对于每个中心节点,采样器会根据指定的邻居采样策略,选择其邻居节点作为邻居子图的节点。
  3. 采样器会根据邻居节点之间的边关系,构建邻居子图的边。
  4. 采样器会记录邻居子图的节点和边信息,形成一个邻居子图。
  5. 邻居子图可以用于训练图神经网络,以学习节点之间的关系和图的结构。

NeighborSampler的优点包括:

  • 灵活的采样策略:采样器可以根据需求选择不同的邻居采样策略,如随机采样、按度数采样等,以满足不同的训练需求。
  • 可扩展性:采样器可以处理大规模图数据,并且可以在分布式环境中进行并行化处理。
  • 适用于图神经网络训练:采样器生成的邻居子图可以用于训练图神经网络,以学习节点之间的关系和图的结构。

总之,NeighborSampler是一种用于图数据的灵活邻居采样器,可以生成邻居子图,用于训练图神经网络。它在大规模图数据和分布式环境中具有良好的可扩展性和适用

三、获取数据集
3.1 网络获取


dataset = PygNodePropPredDataset(name='ogbn-arxiv', transform=T.ToUndirected())

是这句代码下载了名为'ogbn-arxiv'的数据集。根据代码中使用的PyTorch Geometric库的命名约定,`PygNodePropPredDataset`是用于节点属性预测任务的数据集类。通过指定`name='ogbn-arxiv'`,它将下载并加载名为'ogbn-arxiv'的数据集。

该数据集的名称`ogbn-arxiv`指的是Open Graph Benchmark (OGB) 中的论文引用网络数据集。这个数据集用于进行节点属性预测任务,即根据节点的特征和邻接关系预测节点的属性或类别。

所以,这句代码确实是用于下载数据集,并将其存储在`dataset`变量中供后续使用。

3.2 已经下载到本地的数据集

经过下载后本地会有一个dataset文件夹

如果你已经将数据集下载到本地并希望从本地加载数据集,可以使用PygNodePropPredDatasetroot参数来指定数据集的本地路径。以下是修改后的代码示例:

dataset = PygNodePropPredDataset(root='/path/to/dataset', name='ogbn-arxiv', transform=T.ToUndirected())

在这里,需要将/path/to/dataset替换为实际数据集所在的本地路径。通过指定root参数,PyTorch Geometric将从指定的本地路径加载数据集而不是从互联网下载。确保将/path/to/dataset替换为实际的本地路径,以便正确加载数据集。

以下训练ogb数据集节点分类任务

该实验结果是一个注意力头的GAT模型在该数据集上的结果,准确率:76.76

GATv2,一个注意力头,ogbn-arxiv数据集,准确率:77.38

### 回答1: 神经网络(Graph Neural Network, GNN) 用于数据的分析和处理,可以用于中节点或边的分类、分析、生成等多项任务。 以下是一份基于 PyTorch 的神经网络代码,你可以使用这份代码实现检测。 ``` import torch import torch.nn as nn import torch.nn.functional as F class GraphConvolution(nn.Module): def __init__(self, in_features, out_features): super(GraphConvolution, self).__init__() self.fc = nn.Linear(in_features, out_features) def forward(self, x, adj): x = torch.mm(adj, x) x = self.fc(x) return x class GCN(nn.Module): def __init__(self, in_features, hidden_features, out_features): super(GCN, self).__init__() self.gc1 = GraphConvolution(in_features, hidden_features) self.gc2 = GraphConvolution(hidden_features, out_features) def forward(self, x, adj): x = F.relu(self.gc1(x, adj)) x = self.gc2(x, adj) return x ``` 使用方法: 1. 定义的邻接矩阵 `adj` 2. 定义上节点的特征矩阵 `x` 3. 实例化 GCN 模型 4. 调用 `forward` 函数,得到检测结果 代码仅供参考,实际应用中你可能需要根据你的任务进行修改。 ### 回答2: 神经网络(Graph Neural Network,GNN)是一种针对数据的深度学习模型。在进行像检测的任务中,我们可以使用神经网络来提取像中的特征,并进行相应的分类或回归。 以下是一个简单的使用Python实现的神经网络检测的代码示例: ``` import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import GCNConv from torch_geometric.utils import to_undirected class GraphConvNet(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(GraphConvNet, self).__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, x, edge_index): edge_index = to_undirected(edge_index) x = self.conv1(x, edge_index) x = F.relu(x) x = self.conv2(x, edge_index) return x # 构建神经网络模型 input_dim = 128 hidden_dim = 64 output_dim = 10 model = GraphConvNet(input_dim, hidden_dim, output_dim) # 定义数据和标签 x = torch.randn(100, input_dim) edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]], dtype=torch.long) y = torch.tensor([0, 1, 0, 1], dtype=torch.long) # 进行模型训练 optimizer = torch.optim.Adam(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() def train(): optimizer.zero_grad() output = model(x, edge_index) loss = criterion(output, y) loss.backward() optimizer.step() # 进行多轮训练 for epoch in range(10): train() # 使用训练好的模型进行预测 output = model(x, edge_index) predicted_labels = torch.argmax(output, dim=1) print(predicted_labels) ``` 以上代码中,我们使用了PyTorch库中的torch和torch_geometric模块。首先,我们定义了一个GraphConvNet类作为神经网络模型。在forward函数中,我们使用了GCNConv进行卷积操作,并通过ReLU激活函数进行非线性映射。 接着,我们通过定义输入数据x和边索引edge_index,以及相应的标签y,来构建训练数据。然后,我们定义了一个训练函数train,并通过多轮训练来训练模型。 最后,我们使用训练好的模型进行预测,并输出预测结果。 需要注意的是,以上代码只是一个简单的示例,实际应用中可能需要根据具体问题进行相应的调整和改进。这里的输入数据x和边索引edge_index需要根据实际情况进行构建,并且模型的参数设置也需要根据具体问题进行调整。 ### 回答3: 以下是一个使用Python编写的神经网络(Graph Convolutional Network, GCN)进行节点分类的示例代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class GraphConvolutionLayer(nn.Module): def __init__(self, in_features, out_features): super(GraphConvolutionLayer, self).__init__() self.linear = nn.Linear(in_features, out_features) def forward(self, x, adjacency_matrix): x = torch.matmul(adjacency_matrix, x) x = self.linear(x) return x class GCN(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(GCN, self).__init__() self.gc1 = GraphConvolutionLayer(input_dim, hidden_dim) self.gc2 = GraphConvolutionLayer(hidden_dim, output_dim) def forward(self, x, adjacency_matrix): x = F.relu(self.gc1(x, adjacency_matrix)) x = self.gc2(x, adjacency_matrix) return x # 创建一个简单的数据 adjacency_matrix = torch.tensor([[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]], dtype=torch.float32) features = torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]], dtype=torch.float32) labels = torch.tensor([0, 1, 1, 0], dtype=torch.long) # 创建GCN模型,并定义损失函数和优化器 input_dim = features.shape[1] hidden_dim = 16 output_dim = 2 model = GCN(input_dim, hidden_dim, output_dim) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 训练模型 epochs = 100 for epoch in range(epochs): optimizer.zero_grad() output = model(features, adjacency_matrix) loss = loss_fn(output, labels) loss.backward() optimizer.step() # 对新节点进行分类预测 new_feature = torch.tensor([[0.9, 1.0]], dtype=torch.float32) predicted_label = torch.argmax(model(new_feature, adjacency_matrix)) print("预测标签为:", predicted_label.item()) ``` 请注意,这只是一个简单的示例代码,用于说明神经网络(GCN)的基本原理和使用方法。在实际应用中,您可能需要更复杂的网络结构和更大规模的数据集来获得更好的性能。另外,这个代码需要PyTorch框架来运行,所以请确保已经安装了PyTorch环境。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值