矩阵分析与应用

一致方程的最小范数解

假设线性方程为:

x_{1}+2x_{2}=10

如图1所示,直线x_{1}+2x_{2}=10上的所有点\left ( x_{1},x_{2} \right )都是这个线性方程的解,即通解。但是如果我们要确定一个唯一的解,就必须增加某个约束条件。

比如要求得到的解的范数最小,这样得出的解就称为最小范数解,也称最短距离解。

范数最小等同于该点与原点的距离最小,如图1所示,若要与原点距离最小,则该点与原点的连线垂直与直线x_{1}+2x_{2}=10

图1

下面讨论一般情况下线性方程Ax=y的最小范数解,先讨论其通解。

定理:令n*m的矩阵A^{-}是m*n矩阵A的任意一个广义逆矩阵,则

1.齐次方程Ax=0的一个通解为x=(I-A^{-}A)z,其中z是n*1的任意向量。                         

 证明:                                                                     

 Ax=A(I-A^{-}A)z=(A-AA^{-}A)z=0

即可得

x=(I-A^{-}A)z

是齐次方程Ax=0的一个通解。

2.非齐次方程Ax=y为一致方程的充分必要条件是:


AA^{-}y=y

3.非齐次方程Ax=y的一个通解是:

x=A^{-}y+(I-A^{-}A)z

其中,z为n*1的任意向量。

证明:

Ax=x=AA^{-}y+A(I-A^{-}A)z=y+0=y

x=A^{-}y+(I-A^{-}A)z

是非齐次方程Ax=y的一个通解。

那么现在的问题就转变为:是否存在一个与y无关的广义逆矩阵G,能使得解Gy在所有的解中具有最小范数?换言之,该广义逆矩阵G应该满足如下条件:

\min_{Ax=y} \left \| x \right \|=\left \| Gy \right \|

若满足上式,则称Gy为方程Ax=y的最小范数解,并称广义逆矩阵G为最小范数广义逆矩阵。

考虑矩阵A_{m \times n}和向量x_{n \times 1},y_{m \times 1},于是\left \langle Ax,y \right \rangle是m阶向量空间的内积,记作\left \langle Ax,y \right \rangle_{m},矩阵A_{m \times n}的伴随矩阵用符号A_{n \times m}^{\#}表示,定义为将m阶向量空间的内积等价变换为n阶向量的内积的一个映射,即有:

\left \langle Ax,y \right \rangle_{m}=\left \langle x,A^{\#}y \right \rangle_{n}


特别的,若A^{\#}=A,则称A为自伴随矩阵,显然,自伴随矩阵一定是正方形矩阵,这里的伴随矩阵与逆矩阵中的伴随矩阵的定义有所不同,伴随矩阵有如下性质:

1.\left (A^{\#} \right )^{\#}=A

2.\left (AB \right )^{\#}=B^{\#}A^{\#}

3.\left \langle Ax,By \right \rangle=0,\forall x,y\Leftrightarrow A^{\#}B=O

4.A^{\#}=A^{T}(若A为实矩阵)或A^{\#}=A^{H}(A为复矩阵)

定理:Gy是一致方程Ax=y的最小范数解,当且仅当

AGA=A,(GA)^{\#}=GA

证明:若Gy是是一致方程Ax=y的一个解,则G必须是满足AGA=A的广义逆矩阵。

一致方程Ax=y的一个通解是:

x=Gy+(I-GA)z

其中,z为n*1的任意向量。若Gy为最小范数解,则有:


\left \| Gy \right \|\leqslant \left \| Gy+ (I-GA)z\right \|,\forall z

或者

\left \| GAb \right \|\leqslant \left \| GAb+ (I-GA)z\right \|,\forall b,z

\Leftrightarrow \left \langle GAb,(I-GA)z \right \rangle=0,\forall b,z

\Leftrightarrow (GA)^{\#}(I-GA)=O

\Leftrightarrow (GA)^{\#}=(GA)^{\#}GA

(GA)^{\#}=GA,则由AGA=A容易得到:

(GA)^{\#}GA=GAGA=GA=(GA)^{ \#}

(GA)^{\#}\neq GA,则假设不成立。

继续讨论若A_{m\times n}具有满行秩m,线性方程Ax=y的最小范数解。

由于A满行秩,故增广矩阵[A,y]的秩与A的秩相同,即线性方程Ax=y是一致方程。存在右伪逆矩阵A^{H}(AA^{H})^{-1}与之对应的解为:

x^{o}=A^{H}(AA^{H})^{-1}y

非一致方程的最小二乘解

考虑非一致方程Ax=y是不存在严格满足方程组的解的,换言之,非一致方程只能有近似解,因此,我们希望寻找严格使得方程两边的误差平方和为最小的解,这一种解称为非一致方程的最小二乘解,具体来说,若用\hat{x}代表最小二乘解,则其应该满足:

\left \| A \hat{x}-y \right \|=\inf_{x}\left \| Ax-y \right \|

式中,inf代表函数的下确界。

定理:若G为某个矩阵,则\hat{x}=Gy是非一致方程Ax=y的最小二乘解,当且仅当满足

A^{\#}AG=A^{\#}

或者等价为:

AGA=A,(AG)^{\#}=AG

非一致方程的最小二乘解有可能不是唯一的,但是不同的最小二乘解得到的Ax和Ax-y是唯一的。

非一致方程Ax=y的最小二乘解的通解形式为:


\hat{x}=Gy+(I-GA)z,\forall z

### 回答1: 《矩阵分析应用》是由张贤达编著的一本关于矩阵分析及其在应用中的使用的教材。本书主要介绍了矩阵的基本概念、性质和运算,并探讨了矩阵在线性代数、微积分、概率统计、信号处理等学科中的应用。 在矩阵分析的基础部分,本书详细阐述了矩阵的定义、矩阵的运算法则,以及线性方程组和特征值问题等。这些基础知识对于进一步学习矩阵应用具有重要的指导作用。 在矩阵应用部分,本书首先介绍了矩阵在线性方程组求、线性变换、向量空间等方面的应用。其次,本书还讨论了矩阵在微积分中的应用,如矩阵微积分和矩阵微分方程等。此外,本书还深入介绍了矩阵在概率统计、信号处理、图论及最优化等领域中的重要应用,如随机矩阵、协方差矩阵、图的邻接矩阵最小乘法等。 总的来说,张贤达的《矩阵分析应用》是一本内容丰富、系统全面的矩阵分析教材。通过阅读本书,读者可以逐步掌握矩阵的基本理论和运算,并了其在不同学科中的应用。无论是对于即将学习矩阵分析的学生,还是对于已经有一定矩阵基础的科研人员和工程师,本书都是一本实用的参考书,可以提供帮助和指导。 ### 回答2: 《矩阵分析应用》是由张贤达编写的一本专门介绍矩阵分析应用的教材。该书以系统的方式介绍了矩阵的理论、性质和基本运算,同时也涵盖了矩阵在各种应用领域中的具体应用。这本教材适用于数学、物理、工程、计算机科学等各个领域的学习者。 在矩阵分析的理论方面,书中首先介绍了矩阵的基本概念和运算法则,包括行、列、元素、转置、加减乘除等,同时也释了矩阵的相等和乘积等性质。然后,书中详细讲了特殊类型的矩阵,如对称矩阵、三角矩阵、奇异矩阵等,并介绍了它们的特征和性质。此外,书中还涉及到矩阵的线性组合、秩、行列式、逆矩阵和特征值等重要概念和定理。 在应用方面,该书展示了矩阵在各个领域中的广泛应用。首先,矩阵在线性代数中的应用包括线性方程组、线性变换、特征值问题等。其次,矩阵在工程中的应用包括电路分析、力学分析、信号处理等。最后,矩阵在计算机科学中的应用包括图像处理、机器学习、数据挖掘等。 总之,《矩阵分析应用》是一本全面介绍矩阵分析应用的教材,在理论和应用方面都给予了读者充分的讲和示例。无论是对于学术研究者还是专业技术人员,该书都是一本很好的参考书籍。它帮助读者建立了对矩阵的全面认识,为进一步的学习和应用提供了坚实的基础。 ### 回答3: 《张贤达矩阵分析应用pdf》是张贤达教授撰写的一本关于矩阵分析应用的教材。矩阵分析是数学中的分支之一,它研究矩阵的性质和运算规律,并将其应用于各种领域。 这本教材以系统介绍矩阵分析为主线,内容包括线性空间、线性变换、矩阵的运算与性质、特征值与特征向量等基础内容。此外,它还涵盖了矩阵的迹、行列式、正交变换、对称矩阵等高级内容,以及广义逆矩阵、半正定矩阵等一些应用领域。 这本教材的优点是内容全面,理论与实践相结合。作者以通俗易懂的语言释了复杂的数学概念,并且通过大量的例题和习题帮助读者巩固所学知识。此外,教材还提供了一些实际应用案例,如图像处理、信号处理等领域,使读者能够将所学知识应用于实际问题中。 针对该教材的读者群体主要包括数学、工程、物理等相关专业的本科生和研究生。对于想要深入学习矩阵分析应用于实际问题的读者来说,这本教材是一本很好的参考书。 总体来说,《张贤达矩阵分析应用pdf》是一本内容丰富、易于理且具有实际应用价值的教材。无论是作为教学辅助资料还是自学工具,它都能帮助读者掌握矩阵分析的核心概念和方法,并将其应用于实际问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值