基于风光储能和需求响应的微电网日前经济调度(Python代码实现)【0】

微电网日前调度:风光储能与需求响应的经济优化
本文研究微电网的经济调度,考虑风光储能和需求响应的参与,通过Python实现。分析了五种调度方案,包括价格型和激励型需求响应,以降低运行成本和优化峰谷差。实验表明,风光储能和需求响应的结合能有效降低运行成本,提高新能源消纳率和用户舒适度。

目录

0 引言

1 计及风光储能和需求响应的微电网日前经济调度模型

1.1风光储能需求响应都不参与的模型

1.2风光参与的模型

1.3风光和储能参与模型

1.4 风光和需求响应参与模型

1.5 风光储能和需求响应都参与模型 

2 需求侧响应评价

2.1  负载率

2.2 可再生能源消纳率

2.3 用户舒适度

2.4 日最高负荷与日最高-最低负荷比率


摘要:以实现经济性最优为目标,在得到新能源出力、负荷出力的日前预测上,考虑电网侧的实时电价。对风光储能需求响应都不参与、风光参与、风光和储能参与、风光和需求响应参与、风光储能和需求响应都参与五种调度方案进行探讨。对于需求响应调度,首先基于价格伸缩系数法的价格型需求响应,再加入激励型需求响应调度。对比各种调度情况下负载系数、新能源消纳率及用户舒适度。得到各种方案的供电构成图和供电成本,实验结果表明:风光储能和需求响应都参与微电网经济调度降低微电网的运行成本,并起到很好的消峰填谷的作用。

关键词:实时电价、风机、光伏、储能、需求响应、微电网经济调度


0 引言

近年来,微电网、清洁能源等已成为全球关注的热点。清洁能源在我国可持续发展战略中具有日益重要的地位,政府、企业、学术界均在清洁能源技术及其评价上做了大量工作[1]。

基于风光储能需求响应微电网日前经济调度,可以通过Python代码实现。 首先,需要将微电网中的各种设备建模,包括风力发电机、光伏发电机、能源储存设备(如电池)以及消费设备(如家庭电器)。使用Python的建模库,可以创建出每个设备的模型,并设置其相应的参数,例如发电机的最大输出功率、电池的充放电能力等等。 然后,根据实际情况,可以设置一段时间内的需求响应策略,例如在用电高峰期间降低电器的使用,或者在用电低谷期间增加电池的充电。这些策略可以通过编写Python函数来实现。 接下来,可以通过编写优化算法,例如线性规划或遗传算法,来确定微电网中各设备的实际运行方案。优化算法的目标是最小化微电网的总成本,包括发电机的燃料成本、电池的充放电效率损失、电网的购电成本等等。通过调用Python的优化库,可以使用已有的优化算法函数,将成本最小化作为优化目标。 最后,根据得到的最优解,可以编写代码来模拟微电网的实际运行情况。通过使用Python的时间序列库,可以模拟微电网在一段时间内的发电、储能用电情况,并将结果进行可视化展示,例如绘制发电量用电量的曲线图。 综上所述,基于风光储能需求响应微电网日前经济调度可以通过Python代码实现,具体包括设备建模、需求响应策略、优化算法运行模拟等步骤。使用Python的建模、优化可视化库可以方便地实现这些步骤,并得到最优的微电网运行方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值