【优化调度】基于改进遗传算法求解带时间窗约束多卫星任务规划(Matlab代码实现)

目录

1 概述

2 运行结果

3 参考文献

4 Matlab代码


1 概述

卫星观测任务调度问题描述如下。基于对太空在轨卫星观测需求,需要在地面观测设备有限的情况下对我国上空在轨运行卫星进行观测任务调度。假设全国现共有M个地面观测设备(每个观测设备都需要对卫星执行相应的观测任务),N个待观测卫星,且M<<N。每个待观测卫星相对于不同的地面设备都有P个可供选择的可见时间窗口,P的数量根据卫星和观测设备的不同而有所差异。其中,每个可观测设备都可以在任何待观测卫星与之对应的可见时间窗口内对该卫星进行观测,观测的时长根据实际任务中该卫星所需观测时间而不同。同时,任意一颗卫星都可在其可见时间窗口内被地面观测设备所观测。由于观测设备自身的物理特性,每个地面观测设备对一颗卫星进行观测结束后对下一颗卫星观测之前,都需要经过设备转换时间,设备的转换时间根据设备的自身特性不同而不同。在地面观测设备选择对哪一颗卫星的哪一段可见时间窗口进行观测时,不同的卫星之间由于实际观测任务需求的不同,观测的优先级也不同。该卫星所承担的角色越重要,其观测优先级就越高,同时由于地面观测设备的精度有所偏差,地面观测设备精度越高,该设备的优先级也越高。不难理解,优先级高的地面观测设备应该尽量选择优先级较高的卫星进行观测。在整个观测任务的规划调度中,每颗卫星最多应被观测一次。调度的目标是在整个观测任务调度的过程中,尽量用较短的时间观测完更多优先级较高的卫星,使最终的卫星和地面站优先级达到最大。

此外,在对多卫星进行观测的任务调度中,还应满足以下约束条件:

  1. 地面观测设备在对其中一个卫星的某一个可见时间窗口进行观测时,除设备故障原因,中途不能中断观测,且观测时间要达到实际任务规划中该卫星的观测时间需求;
  2. 同一时间同一台地面观测设备只能在某一个卫星的某个可见时间窗口内对该卫星进行观测,同一时间卫星的某个可见时间窗口也只能被一台地面设备进行观测;
  3. 当卫星的某一时间窗口被其中一台地面设备观测结束之后,该卫星的任何可见时间窗口都不能被其他地面设备进行观测,每个卫星最多只能被观测一次;
  4. 对于同一台地面观测设备而言,其在完成对一颗卫星的观测任务后,对下一颗卫星进行观测前,需要经过设备的转换时间;

本文的卫星观测任务调度,观测设备是基于光学观测,不考虑观测设备与卫星之间的频率等其他物理因素,假设天气情况良好,在卫星的可见时间窗口内,各设备与卫星都可见。数学模型见第3部分。

2 运行结果

 

 

3 参考文献


[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

4 Matlab代码

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个简单的示例代码,使用NSGA-II算法求解时间的多目标函数路径优化问题。请注意,这只是一个基本的框架,你需要根据具体的问题进行适当的修改和扩展。 ```python import random from deap import base, creator, tools, algorithms # 定义问题参数 num_tasks = 10 # 任务数量 time_windows = [(0, 10), (5, 15), (10, 20), (8, 18), (12, 22), (15, 25), (20, 30), (18, 28), (22, 32), (25, 35)] # 每个任务时间限制,格式为(开始时间,结束时间) # 定义遗传算法参数 population_size = 100 num_generations = 50 # 定义适应度函数 def evaluate(individual): # 计算每个任务的开始时间和结束时间 start_times = [0] + individual end_times = [start_times[i] + time_windows[i][1] for i in range(num_tasks)] # 计算目标函数1:最小化总体完成时间 total_completion_time = max(end_times) # 计算目标函数2:最小化违约惩罚 penalty = sum(max(0, end_times[i] - time_windows[i][1]) for i in range(num_tasks)) return total_completion_time, penalty # 创建遗传算法的适应度函数 creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox = base.Toolbox() # 定义变量的取值范围 toolbox.register("attr_int", random.randint, 0, max(time_windows[i][1] for i in range(num_tasks))) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_int, n=num_tasks) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # 定义遗传算法操作 toolbox.register("evaluate", evaluate) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutUniformInt, low=0, up=max(time_windows[i][1] for i in range(num_tasks)), indpb=0.05) toolbox.register("select", tools.selNSGA2) def main(): # 创建初始种群 population = toolbox.population(n=population_size) # 运行遗传算法 for generation in range(num_generations): offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1) fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population = toolbox.select(offspring + population, k=population_size) # 输出最优解 best_individuals = tools.selBest(population, k=1) best_fitness = evaluate(best_individuals[0]) print("Best individual:", best_individuals[0]) print("Best fitness:", best_fitness) if __name__ == "__main__": main() ``` 这段代码使用DEAP库来实现NSGA-II算法。首先,我们定义了问题参数,包括任务数量和每个任务时间限制。然后,我们定义了适应度函数,其中计算了两个目标函数:最小化总体完成时间和最小化违约惩罚。接下来,我们使用DEAP的工具函数来创建遗传算法的操作,并定义了变量的取值范围。最后,我们运行遗传算法并输出最优解。 请注意,这只是一个简单的示例代码,你需要根据具体的问题进行适当的修改和扩展,例如添加约束条件、调整遗传算法的参数等。希望对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值