基于主从博弈的主动配电网阻塞管理(Matlab代码实现)

随着需求侧灵活性资源在配电网中的增加,不协调的运行可能导致线路阻塞和电压问题。为解决此问题,提出了一种双层调度框架,上层用户寻求最小化用电成本,下层配电网运营商追求社会福利最大化。通过KKT条件和对偶定理,将问题转化为混合整数线性规划。该模型有效缓解网络阻塞并利用灵活性资源进行管理。
摘要由CSDN通过智能技术生成

👨‍🎓个人主页:研学社的博客  

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

参考文献:

 摘要:随着需求侧灵活性资源在配电网中的渗透率不断提高,其不协调的运行方式可能会导致配电网中线路阻塞和节点电压越限。为解决这些问题,提出了一种配电网节点边际电价统一出清的主从博弈双层调度框架。上层框架解决用户在负荷聚合商引导下的用电成本最小化问题,负荷聚合商为主从博弈的领导者;下层框架解决配电网系统运营商在考虑网络潮流安全和电压越限前提下的社会福利最大化问题,配电网系统运营商为主从博弈的追随者。利用Karush-Kuhn-Tucker最优性条件和对偶定理,将非线性双层问题转化为单层混合整数线性规划问题求解。仿真算例验证分析了所提出的模型对缓解网络阻塞的有效性,以及灵活性资源在配电网阻塞管理当中的作用。

关键词:

阻塞管理;配电网节点边际电价;需求侧灵活性资源;主从博弈;KKT条件;

近年来,随着主动配电网( active distribution network, ADN [1] 中需求侧灵活性资源 [2-3] 的快
速发展,对减少化石能源消耗、缓解供需平衡和提高供电可靠性起到了积极的作用。然而,由于
需求侧灵活性资源的自然特性或社会行为规律,增加了配电网运行的不确定性和复杂性,可能会
导致线路过载,使配电网易于出现阻塞现象,给配电网运行和调控带来新的挑战。科学合理的配电网阻塞管理能有效提高电网运行的安全性和经济性[4] 。现阶段主动配电网中阻塞管理的方法主要有直接管理模式和间接管理模式 2 [5] 。直接管理模式利用网架重构 [6] 、无功功率控制 [7] 以及直接减少负荷有功功率需求,达到缓解阻塞的目的。间接管理模式利用灵活性资源对市场电价的敏感特性,考虑潮流约束,通过激励用户调整阻塞时段的可控负荷,达到缓解电网阻塞和节省用户用电费用的目的[8],方法包括日前动态电价[9]、配电网容量市场、影子价格和灵活性服务市场[10] 等。随着配电网节点边际电价(distribution locational marginal price,DLMP)[11-13] 的发展,很多学者将 DLMP 运用到主动配电网阻 塞管理方案当中,并证明了该方法的有效性。文 献 [14-15] 中通过代理商和配电系统运营商(distribution system operator,DSO)之间电价和负荷信息 的交互,选用一种动态电价的定价方式实现可控负荷和电动汽车(electric vehicle,EV)的用电计划调整,从而减少阻塞时段的用电负荷。该方法是将线路阻塞信息纳入动态电价里,反映网络潮流的实际成本,但其动态电价严重依赖于预测的日前电价的精确性。为了减少日前电价预测的误差对出清电价的影响,文献 [16] 利用节点总电力需求的线性市场价格模型描述日前电价,并借助次梯度法确定阻塞价格,针对功率倒流引起的线路正反向潮流越限问题,提出了基于迭代方法的配电网节点电价(iterative distribution location marginal pricing,IDLMP)的产消者分布式日前优化调度方法,通过购售电阻塞价格分别引导线路潮流双向阻塞问题,但是没有考虑节点电压越限场景;文献 [17] 考虑节点电压越限提出了一种基于 DLMP 的电动汽车聚合调度框架,将集中式电动汽车聚合商调度问题转化为分散式双层优化问题,该框架能使网络中的阻塞最小化,但是单一的灵活性资源缺乏说服性;文献 [18] 以需求侧灵活性资源为例,提出基于 DLMP 的日前–实时阻塞管理模型。旨在通过发布 DLMP 引导负荷聚合商(load aggregator,LA)实现阻塞管理,但其复杂的迭代求解方式很难保证解的收敛性。

下面将给出统一节点边际电价出清的双层调度框架。

📚2 运行结果

 

 

 

 

 

 

 

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]张晓东,艾欣.基于主从博弈的主动配电网阻塞管理[J].现代电力,2022,39(06):649-658.DOI:10.19725/j.cnki.1007-2322.2021.0090.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>