【卡尔曼】EKF IMU 融合算法

“在代码的海洋里,有无尽的知识等待你去发现。我就是那艘领航的船,带你乘风破浪,驶向代码的彼岸。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 EKF(扩展卡尔曼滤波)IMU(惯性测量单元)融合算法是一种在导航和定位系统中广泛应用的技术。 IMU 能够提供关于物体运动的加速度和角速度等信息,但由于测量误差的累积,单独使用 IMU 进行长时间的定位和导航会导致较大的偏差。 EKF 则是一种有效的状态估计方法,它能够融合来自多个传感器的测量数据,以降低不确定性和误差。 在 EKF IMU 融合算法中,将 IMU 的测量值与其他传感器(如 GPS、视觉传感器等)的测量值相结合。通过建立系统的数学模型,EKF 对 IMU 的测量误差进行估计和修正,从而得到更准确和可靠的状态估计,包括位置、速度和姿态等。 这种融合算法在机器人导航、自动驾驶、航空航天等领域发挥着重要作用,能够提高系统的精度、稳定性和可靠性。

📚2 运行结果

主函数部分代码:


clear; close all; clc;

%--- Dataset parameters
deltat = 1/200;             % Sampling period
noise_gyro = 2.4e-3;        % Gyroscope noise(discrete), rad/s
noise_accel = 2.83e-2;      % Accelerometer noise, m/s^2
gravity = 9.81007;          % Gravity magnitude, m/s^2

%--- Load data
% Each row of IMU data : 
% (timestamp, wx, wy, wz, ax, ay, az)
% Each row of Ground truth data : 
% (time, position, quaternion, velocity, gyroscope bias, accelerometer bias)
data = load('data/attitude_data.mat');
imu_data = data.imu_data;   % IMU readings
grt_data = data.grt_data;   % Ground truth (GT)
grt_q = grt_data(:, 5:8);   % GT quaternions

bias_w = grt_data(1, 12:14);    % gyroscope bias
bias_a = grt_data(1, 15:17);    % accelerometer bias


%--- Container of the results
N = length(imu_data);
allX = zeros(N, 4);


%--- Initialization
x = grt_q(1,:)';            % Initial state (quaternion)
P = 1e-10 * eye(4);         % Initial covariance
allX(1,:) = x';


% ---Here we go !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
for k = 2 : N
    
    %--- 1. Propagation --------------------------
    % Gyroscope measurements
    w = (imu_data(k-1, 2:4) + imu_data(k, 2:4))/2;
    w = w - bias_w;
    

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈徵粼,刘灏,毕天姝.基于配电网PMU的无监督电力系统扰动特征提取与分类[J/OL].中国电机工程学报:1-13[2024-01-10].https://doi.org/10.13334/j.0258-8013.pcsee.230464.

[2]刘泳,陈帝伊,张猛等.水电煤电协同发展促进电力系统低碳转型方案评价[J/OL].人民长江:1-11[2024-01-10].http://kns.cnki.net/kcms/detail/42.1202.tv.20240108.1403.004.html.

🌈4 Matlab代码实现

图片

### 关于姿态动力学核心算法卡尔曼滤波融合算法 在涉及姿态动力学的核心算法以及这些算法如何与卡尔曼滤波相结合的过程中,通常会涉及到多个方面的内容。姿态估计是一个复杂的过程,在此过程中,传感器数据被用来推断物体的姿态角(如俯仰、横滚和偏航角度),而卡尔曼滤波则用于提高这种估计的准确性。 对于姿态动力学而言,其核心在于建立描述刚体旋转运动规律的动力学方程组。这包括但不限于欧拉角表示法、四元数方法等数学工具的应用来表达三维空间中的转动特性[^1]。当引入卡尔曼滤波器作为数据处理手段时,则可以有效减少测量噪声并提供更加平滑的姿态轨迹预测。 为了实现上述目标,一种常见的做法是在Simulink环境中构建包含IMU(惯性测量单元)、GPS等多种传感输入在内的综合模型,并采用扩展或无迹形式的卡尔曼滤波技术来进行最优状态估计。这类工作往往依赖于MATLAB/Simulink平台的强大建模能力及其内置的各种信号处理函数库支持[^2]。 然而,针对具体到获取关于“姿态动力学核心算法”、“卡尔曼滤波”,特别是两者之间相互作用关系的具体图像资料方面: - **学术论文** 和会议记录通常是此类视觉化材料的良好来源之一; - 各大在线数据库如IEEE Xplore, ScienceDirect上也可能存在大量高质量的相关图表资源; - 开源项目网站GitHub上的某些工程案例分享页面也会附带详细的说明文档及演示图形; 值得注意的是,由于版权保护等原因,直接在网络上搜索可能无法立即获得理想的公开可用图片素材。建议访问专业的文献检索服务平台或者参与特定的技术社区交流活动以获得更多帮助和支持。 ```python import numpy as np from filterpy.kalman import KalmanFilter from matplotlib import pyplot as plt # 构造简单的Kalman Filter实例 kf = KalmanFilter(dim_x=3, dim_z=1) # 定义初始参数... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值